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Foreword

Zélus is a synchronous language in the style of Lustre [12] and Lucid Synchrone [8] but extended
to model hybrid systems that mix discrete-time and continuous-time signals. An example
is a system that mix a (discrete-time) model of real-time control software that executes in
closed loop with a model of its physical environment described by a Ordinary Differential
Equations. More intricate interactions between discrete- and continuous-time behaviors can be
expressed, like, for instance, continuous-time PID controllers or hybrid automata with several
running modes, each of them being defined by an ODEs (the so-called hybrid automata).
Zélus provides basic synchronous language constructs—difference and data-flow equations,
hierarchical automata, and stream function definitions—in the style of Lustre [12] and Lucid
Synchrone [8]. Continuous-time dymamics are expressed by ODEs with events defined as
zero-crossings.

The expressiveness of the language is deliberately constrained to statically ensure deter-
minism and the generation of loop-free sequential code that runs in bounded time and space.
Moreover, code is generated identically for both embedded targets and simulation. For source
programs with ODEs, the generated sequential code is paired with a numerical solver to
approximate the continuous-time dynamics. Zélus’s main features are:

• It is a data-flow language in Single Static Assignment form: every name has only a single
definition in the source code at any instant. A program is a collection of functions from
signals to signals. A signal is a function from time to values. A set of signals is defined as
the solution of a set of mutually recursive equations.

• The separation between discrete-time and continuous-time signals and systems is imposed
at the level of function definitions:

1. A node is a function from discrete-time signals to discrete-time signals. A discrete-time
signal is a sequence of values (a stream) as in other synchronous languages. A node
is executed consecutively over the elements of a sequence of inputs to give a sequence
of outputs. Nodes have no other notion of time than this succession of instants. In
particular, there is no a priori ‘distance’ (time elapsed) between two instants. Outputs
are produced atomically with triggering inputs, that is, instantaneously in the same
discrete instant. They may depend on previous inputs; such nodes are termed stateful.

2. A hybrid node is a function from continuous-time signals to continuous-time signals.
A continuous-time signal is a signal defined on a sequence of time intervals on the real
line. A hybrid node is executed on this set of instants. Only hybrid nodes may contain
ODEs and detect zero-crossing events.

• All discrete-time computations must be executed on a discrete clock. This is statically
enforced by the type system, following the convention:
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A clock is termed discrete if it has been so declared or if it results from the sub-
sampling a discrete clock or a zero-crossing. Otherwise, it is termed continuous.

It is possible to reset a continuous variable defined by an ODE on a discrete clock. A
zero-crossing occurs when a continuous-time signal crosses zero from a negative value to a
positive one during integration. Conceptually, a timer is a particular case of a zero-crossing
event, even if the actual implementation is more specific.

• The basic types like integers, floating-point numbers, booleans, and characters are lifted
from the host language OCaml. Abstract types, product types, record types, and enumerated
types can either be defined directly or imported from the host language. Functions may
have polymorphic types as in ML. Structured values are accessed via pattern matching.

• Data-flow equations may be composed arbitrarily with hierarchical automata as in Lucid
Synchrone2 and SCADE 6.3 The compiler ensures determinacy and the absence of infinite
loops. Hierarchical automata are internally rewritten into data-flow equations.

• The compiler is written in OCaml as a series of source-to-source and traceable transfor-
mations that ultimately yield statically scheduled sequential OCamlcode. The results of
intermediate steps can be displayed. Continuous components are simulated using an off-
the-shelf numerical solvers (SUNDIALS CVODE4 [13]) and, two built-in basic solvers (based
on Matlab’s ode23 and ode45 solvers [18]).

Zélus is a research prototype that exhibits a new way of defining a hybrid systems modeling
language based on the principles and techniques of synchronous languages. Its expressive
power for modeling physics is limited to ODEs, unlike Modelica5 which is based on DAEs.
Research papers on the design, semantics and implementation of Zélus are available at http:
//zelus.di.ens.fr.

Availability

The implementation is written in, and generates programs in OCaml, which must be installed.

Zélus, version 1.2: http://zelus.di.ens.fr
Objective Caml, version 4.02.1 http://www.ocaml.org

The language is experimental and evolves continuously. Please send comments or bug reports
to Timothy.Bourke@inria.fr or Marc.Pouzet@ens.fr.

Copyright notice

This software includes the OCaml run-time system, which is copyrighted INRIA, 2015.

2http://www.di.ens.fr/~pouzet/lucid-synchrone/
3http://www.esterel-technologies.com/products/scade-suite/
4https://www.llnl.gov/casc/sundials/
5https://www.modelica.org

http://zelus.di.ens.fr
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http://zelus.di.ens.fr
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http://www.di.ens.fr/~pouzet/lucid-synchrone/
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Thanks

This software is a research prototype that takes considerable time to develop. If you find it
useful, please consider citing our work [6] and sending us comments.
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The Zélus Language
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Chapter 1

Synchronous Programming

This chapter and the next one give a tutorial introduction to Zélus. This chapter focuses on
the synchronous kernel of the language, which is reminiscent of Lustre and Lucid Synchrone.
We shall sometimes compare Zélus with those two languages. The next chapter focuses on
newer, hybrid aspects, like ODEs, zero-crossings, and their interaction with the synchronous
features. The simulation engine is described in chapter 3.

Familiarity with general programming languages is assumed. Some familiarity with (strict
or lazy) ML languages and with existing synchronous data-flow languages like Lustre is helpful
but not mandatory. Some references are given at the end of this document.

In this tutorial, we suppose that programs are written in a file called tutorial.zls.

1.1 The Core Synchronous Language

1.1.1 Point-wise Operations

Zélus is a first-order functional language. As in Lustre, every ground type or scalar value is
imported from a host language (OCaml) and implicitly lifted to signals. A signal is a sequence
or stream of values ordered in time: a value at an instant can only be produced after the values
at all previous instants have been produced. This property models causality. In particular,

• int stands for the type of streams of integers,

• 1 stands for the constant stream of 1s,

• + stands for the pointwise addition operator over two input streams. It can be seen as
an adder circuit just as && can be seen as an “and” gate.

Program executions can be represented as timelines showing the sequences of values taken by
streams. The example below shows five streams, one per line. The first line shows a stream
c, which has the value T (true) at the first instant, F (false) at the second one, and T at
the third. The ‘· · · ’ indicates that the stream has infinitely more values that are not shown.
The next two lines define x and y. The fourth line defines a stream obtained by the pointwise
addition of x and y. The expression in the fifth line takes the current value of either x or y
according to the current value of c.
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c true false true · · ·
x x0 x1 x2 · · ·
y y0 y1 y2 · · ·

x+y x0 + y0 x1 + y1 x2 + y2 · · ·
if c then x else y x0 y1 x2 · · ·

1.1.2 Delays

The delay operator is denoted fby. The expression x fby y, which is read as “x followed by
y” takes the first value of x at the first instant and the previous value of y at all instants
thereafter. In other words, it delays y by one instant, and is initialized by x. This operator
originated in the language Lucid [1].

x x0 x1 x2 · · ·
y y0 y1 y2 · · ·

x fby y x0 y0 y1 · · ·

As it is often useful to separate a delay from its initialization, there is an operator pre x that
delays its argument x and has an unspecified value (denoted here by nil) at the first instant.
The complementary initialization operator x -> y takes the first value of x at the first instant,
and the current value of y thereafter. The expression x -> (pre y) is equivalent to x fby y.

x x0 x1 x2 · · ·
y y0 y1 y2 · · ·

pre x nil x0 x1 · · ·
x -> y x0 y1 y2 · · ·

The compiler performs an initialization check to ensure that the behavior of a program never
depends on the value nil . See section 1.1.9 for details.

Note: A common error is to try to use the initialization operator to define the first two
values of a stream. This does not work, since x -> y -> z = x -> z. One should instead
write either x fby y fby z or x -> pre (y -> pre z). For example, the stream which
starts with a value 1, followed by a 2, and then 3 forever is written 1 fby 2 fby 3 or
1 -> pre(2 -> pre(3)) or 1 -> pre(2 -> 3).

1.1.3 Global Declarations

A program is a sequence of declarations of global values. The keyword let defines non recursive
global values which may be either constants or functions. For example:

let dt = 0.001
let g = 9.81

These declarations define two constant streams dt and g. Given the option -i, the compiler
displays the types inferred for each declaration:

aneto.local: zeluc.byte -i tutorial.zls

val dt : float
val g : float



Only constant values can be defined globally. The declaration

let first = true -> false

is rejected with the message:

aneto.local: zeluc.byte -i tutorial.zls

File "tutorial.zls", line 1, characters 12-25:
>let first = true -> false
> ^^^^^^^^^^^^^
Type error: this is a discrete expression and is expected to be stateless discrete.

The right-hand side of a global let declaration may not contain delay operations. Definitions
containing delays require the introduction of state. They may only be made within the node
definition described in section 1.1.5.

1.1.4 Combinatorial Functions

Functions whose output at an instant depends only on inputs at the same instant are termed
combinatorial. They are stateless and may thus be used in both discrete and continuous time.
Any expression without delays, initialization operators, or automata is necessarily combina-
torial.

As for any globally defined value, a combinatorial function is defined using the let keyword.
Consider, for example, a function computing the instantaneous average of two inputs:

let average (x,y) = (x + y) / 2

val average : int * int -> int

The type signature inferred by the compiler, int * int -A-> int, indicates that it takes two
integer streams and returns an integer stream. The arrow -A-> tagged with an A indicates
that this function is combinatorial. The A stands for “any”—the function average can be used
anywhere in the code. We will describe other possibilities soon.

Function definitions may contain local declarations, introduced using either where or let
notations. For example, the average function can be written in two (equivalent) ways:

let average (x,y) = o where o = (x + y) / 2

and

let average (x,y) = let o = (x + y) / 2 in o

The full adder is a classic example of a combinatorial program. It takes three input bits,
a, b, and a carry bit c, and returns outputs for the sum s and carry-out co.

let xor (a, b) = (a & not(b)) or (not a & b)

let full_add (a, b, c) = (s, co) where
s = xor (xor (a, b), c)

and co = (a & b) or (b & c) or (a & c)
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Figure 1.1: A half-adder and a full-adder

val xor : bool * bool -> bool
val full_add : bool * bool * bool -> bool * bool

Alternatively, a full adder can be described more efficiently as a composition of two half
adders. A graphical depiction is given in figure 1.1. The corresponding program text is:

let half_add(a,b) = (s, co) where
s = xor (a, b)

and co = a & b

val half_add : bool * bool -> bool * bool

let full_add2(a, b, c) = (s, co) where
rec (s1, c1) = half_add(a, b)
and (s, c2) = half_add(c, s1)
and co = c1 or c2

val full_add2 : bool * bool * bool -> bool * bool

The rec keyword specifies that the block of equations following the where is defined by
mutual recursion. Without it, the s1 in the equation for s and c2 would have to exist in the
list of inputs or the global environment, and similarly for c1 and c2 in the equation for co.

Alternative notation: For combinatorial function definitions, the keyword let can be
replaced by fun.

fun half_add (a,b) = (s, co) where
rec s = xor (a, b)
and co = a & b

1.1.5 Stateful Functions

A function is stateful or sequential if its output at an instant n depends on the inputs at
previous instants k (k ≤ n), that is, on the history of inputs. Such functions may produce a
varying output signal even when their inputs are constant.

Stateful functions must be declared with the node keyword. For example, this function
computes the sequence of integers starting at an initial value given by the parameter m:

let node from m = nat where
rec nat = m -> pre nat + 1



val from : int -D-> int

The type signature int -D-> int indicates that from is a sequential function that maps one
integer stream to another. The D indicates that this function is stateful, it stands for “discrete”.
The function’s output may depend on the past values of its input.

Applying this function to the constant stream 0 yields the execution:

m 0 0 0 0 0 0 · · ·
1 1 1 1 1 1 1 · · ·
pre nat nil 0 1 2 3 4 · · ·
pre nat + 1 nil 1 2 3 4 5 · · ·
m -> pre nat + 1 0 1 2 3 4 5 · · ·
from m 0 1 2 3 4 5 · · ·

The fact that a function is combinatorial is verified during compilation. Thus, omitting
the node keyword,

let from n = nat where rec nat = n -> pre nat + 1

leads to an error message:

aneto.local: zeluc.byte -i tutorial.zls

File "tutorial.zls", line 1, characters 33-49:
>let from n = nat where rec nat = n -> pre nat + 1
> ^^^^^^^^^^^^^^^^
Type error: this is a discrete expression and is expected to be combinatorial.

While a node (arrow type -D->) cannot be called within a combinatorial function, it is possible
to call a combinatorial function (arrow type -A->) within in a node. For example, the addition
operator in the from function has the type signature int * int -A-> int.

We now present a few more examples of stateful functions.
The edge front detector is defined as a global function from boolean streams to boolean

streams:

let node edge c = c & not (false fby c)

val edge : bool -D-> bool

c false false true true false true · · ·
false false false false false false false · · ·
false fby c false false false true true false · · ·
not (false fby c) true true true false false true · · ·
edge c false false true false false true · · ·

A forward Euler integrator can be defined by:

let dt = 0.01
let node integr (x0, x’) = x where

rec x = x0 -> pre (x +. x’ *. dt)



val dt : float
val integr : float * float -D-> float

These declarations give a global function integr that returns a stream x defined recursively so
that, for all n ∈ IN, x(n) = x0+

∑n−1
i=0 x

′(i) · dt. The operators ‘+.’ and ‘*.’ are, respectively,
addition and multiplication over floating-point numbers. Stateful functions are composed just
like any other functions, as, for example, in:

let node double_integr (x0, x0’, x’’) = x where
rec x = integr (x0, x’)
and x’ = integr (x0’, x’’)

Alternative notation: The keyword let can be omitted, for example,

node integr (x0, x’) = x where
rec x = x0 -> pre (x +. x’ *. dt)

1.1.6 Local and Mutually Recursive Definitions

Variables may be defined locally with let/in or let rec/in whether the defining expression
is stateful or not. The following program computes the Euclidean distance between two points:

let distance ((x0,y0), (x1,y1)) =
let d0 = x1 -. x0 in
let d1 = y1 -. x1 in
sqrt (d0 *. d0 +. d1 *. d1)

Since d0 and d1 denote infinite streams, the computations of x1 -. x0 and y1 -. x1
occur in parallel, at least conceptually. In Zélus, however, the consecutive nesting of let/ins
introduces a sequential ordering on the computations at an instant. In this example, this
means that the current value of d0 is always computed before the current value of d1. Being
able to impose such an ordering is useful when functions with side-effects are imported from
the host language. Write simply let rec d0 = ... and d1 = ... if no particular ordering
is needed.

Streams may be defined through sets of mutually recursive equations. The function that
computes the minimum and maximum of an input stream x can be written in at least three
equivalent ways. As two mutually recursive equations after a where:

let node min_max x = (min, max) where
rec min = x -> if x < pre min then x else pre min
and max = x -> if x > pre max then x else pre max

as a stream of tuples defined by two local, mutually recursive equations:

let node min_max x =
let rec min = x -> if x < pre min then x else pre min

and max = x -> if x > pre max then x else pre max in
(min, max)

or as a stream of tuples defined by a single recursive equation:



let node min_max x = (min, max) where
rec (min, max) = (x, x) -> if x < pre min then (x, pre max)

else if x > pre max then (pre min, x)
else (pre min, pre max)

Discrete approximations to the sine and cosine functions can be defined by:

let node sin_cos theta = (sin, cos) where
rec sin = integr(0.0, theta *. cos)
and cos = integr(1.0, -. theta *. sin)

1.1.7 Shared Memory and Initialization

In addition to the delay operator pre, Zélus provides another construction for referring to the
previous value of a stream: last o, where o is a variable defined by an equation. For example:

let node counter i = o where
rec init o = i
and o = last o + 1

The equation init o = i defines the initial value of the memory last o. This memory is
initialized with the first value of i and thereafter contains the previous value of o. The above
program is thus equivalent to the following one:1

let node counter i = o where
rec last_o = i -> pre o
and o = last_o + 1

The reason for introducing memories will become clear when control structures are introduced
in section 1.2.2. Syntactically, last is not an operator: last o denotes a shared memory and
the argument of last, here o, must be a variable name. Thus this program is rejected:

let node f () = o where
rec o = 0 -> last (o + 1)

File "tutorial.zls", line 2, characters 21-22:
> rec o = 0 -> last (o + 1)
> ^
Syntax error.

Rather than define the current value of a signal in terms of its previous one, the next value
can also be defined in terms of the current one. The same counter program can be written:

let node counter i = o where
rec init o = i
and next o = o + 1

or equivalently:

let node counter i = o where
rec next o = o + 1 init i

1The construction last is eliminated during compilation by a similar transformation.



In both definitions, o is initialized with the first value of i and then the value of o at instant
n+ 1 is the value of o + 1 at instant n (for all n ∈ IN).

Neither the form defining the current value from the previous one, nor the form defining
the next value from the current one is intrinsically superior; it depends on the situation. Either
form can be transformed into the other. We will see in chapter 2 that restrictions apply to both
the next and last constructions when combining discrete- and continuous-time dynamics.

Remark: The compiler rewrites last, ->, fby, pre, init and next into a minimal subset.

1.1.8 Causality Check

Instantaneous cycles between recursively defined values—causality loops—are forbidden so
that the compiler can produce statically-scheduled sequential code. For example, the program:

let node from m = nat where
rec nat = m -> nat + 1

is rejected with the message:

File "tutorial.zls", line 2, characters 12-24:
> rec nat = m -> nat + 1
> ^^^^^^^^^^^^
Causality error: This expression has causality type
’a, whereas it should be less than ’b
Here is an example of a cycle:
nat at ’c < nat at ’c

This program cannot be computed since nat depends instantaneously on itself. The compiler
statically rejects function definitions that cannot be scheduled sequentially, that is, when the
value of a stream at an instant n may be required in the calculation of that very value at the
same instant, whether directly or through a sequence of intermediate calculations. In practice,
we impose that all such stream interdependencies be broken by a delay (pre or fby). The
purpose of causality analysis to to reject all other loops.

Note that delays can be hidden internally in the body of a function as is the case, for
instance, in the languages Lustre and Signal. For example, consider the initial value problem:

ṫ = g0 − g1 · t
t(0) = t0

We can approximate this value by using the explicit Euler integrator defined previously and
defining a signal t by a recursive equation.

(* [t0] is the initial temperature; [g0] and [g1] two constants *)
let node heater(t0, g0, g1) = t where

rec t = integr(t0, g0 -. g1 *. t)

val heater : float * float * float -D-> float

This feedback loop is accepted because integr(t0, g0 -. g1 *. temp) does not depend
instantaneously on its input.

It is also possible to force the compiler to consider a function as strict with the atomic
keyword. For example, the following program is rejected by the causality analysis.



let atomic node f x = 0 -> pre (x + 1)
let node wrong () =

let rec o = f o in o

File "tutorial.zls", line 3, characters 14-17:
> let rec o = f o in o
> ^^^
Causality error: This expression has causality type
’a, whereas it should be less than ’b
Here is an example of a cycle:
o at ’c < o at ’c

Even though the output of f does not depend instantaneously on its input x, the keyword
atomic adds instantaneous dependencies between the output and all inputs. For atomic
functions, the compiler produces a single step function.2

1.1.9 Initialization Check

The compiler checks that every delay operator is initialized. For example,

let node from m = nat where
rec nat = pre nat + 1

File "tutorial.zls", line 2, characters 6-9:
> rec nat = pre nat + 1
> ^^^
Initialization error: this expression has type 1
which should be less than
0.

The analysis [10] is a one-bit analysis where expressions are considered to be either always
defined or always defined except at the very first instant. In practice, it rejects expressions
like pre (pre e), that is, uninitialized expressions cannot be passed as arguments to delays;
they must first be initialized using the -> operator.

1.2 Data types and Pattern Matching

1.2.1 Type Definitions

Product types, record types, and enumerated types are defined in a syntax close to that
of OCaml. Constructors with arguments are not supported in the current release. They can
nevertheless be defined together with the functions that manipulate them in an OCaml module
which is then imported into Zélus; see section 4.12.

Records are defined as in Ocaml and accessed with the dot notation. For example, the
following defines a type circle, representing a circle as a record containing a center, given
by its coordinates, and a radius.

2Note, though, that Modular code generation where a function is split into a minimal set of functions, as
proposed in [17, 14], is not implemented in the current version of the compiler. Some functions are inlined,
however, according to the dependency information computed by the causality analysis.



sensor

Figure 1.2: Rotating colored wheel and sensor

type circle = { center: float * float; radius: float }

let center c = c.center
let radius c = c.radius

1.2.2 Pattern Matching

Pattern matching over streams uses a match/with construction like that of OCaml.
For example, consider a colored wheel rotating on an axis for which we want to compute

the direction of rotation. As shown in figure 1.2, the wheel has three sections with colors,
ordered clockwise, blue (Blue), green (Green), and red (Red) . A sensor mounted on the frame
detects the changing colors as the wheel turns.

We must calculate whether the wheel is moving clockwise (Clockwise), that is, the sensor
reports the sequence Red, Green, Blue, Red. . . , anticlockwise (Anticlockwise), whether it is
not moving (Immobile), or whether the direction cannot be determined (Undetermined). We
program the controller by first introducing two sum types:

type color = Blue | Red | Green
type dir = Clockwise | Anticlockwise | Undetermined | Immobile

The function direction then compares three successive values of the input stream i.

let node direction i = d where
rec pi = i fby i
and ppi = i fby pi
and match ppi, pi, i with

| (Red, Red, Red) | (Blue, Blue, Blue) | (Green, Green, Green) ->
do d = Immobile done

| (_, Blue, Red) | (_, Green, Blue) | (_, Red, Green) ->
do d = Clockwise done

| (_, Red, Blue) | (_, Green, Red) | (_, Blue, Green) ->
do d = Anticlockwise done

| _ -> do d = Undetermined done
end

val direction : color -D-> dir



Each handler in a pattern-matching construct contains a set of equations defining shared
variables; here the variable d. At each instant, the match/with statement in the example
selects the first pattern (from the top) that matches the actual value of the triple ppi, pi,
i and executes the corresponding branch. Only one branch is executed in any single reaction.

Combining such control structures with delay operators can give rise to subtle behaviors.
Consider, for instance, the following program with two modes: in the Up mode, the variable o
increases by 1 at each reaction and, in the mode Down, it decreases by 1.

type modes = Up | Down

let node two (m, i) = o where
rec init o = i
and match m with

| Up -> do o = last o + 1 done
| Down -> do o = last o - 1 done
end

The equation init o = i defines a shared memory last o which is initialized with the first
value of i. The variable o is called a shared variable because its definition is spread over
several equations: when m equals Up, o equals last o + 1; when m equals Down, o equals last
o - 1. Communication between the two modes occurs through the shared memory last o
which contains the value that o had the last time that it was defined (that is, at the most
recent previous instant of definition). An example execution diagram is given below.

i 0 0 0 0 0 0 0 · · ·
m Up Up Up Down Up Down Down · · ·
last o + 1 1 2 3 3 · · ·
last o - 1 2 2 1 · · ·
o 1 2 3 2 3 2 1 · · ·
last o 0 1 2 3 2 3 2 · · ·

An equivalent way to express the same behaviour is:

let node two (m, i) = o where
rec last_o = i -> pre o
and match m with

| Up -> do o = last_o + 1 done
| Down -> do o = last_o - 1 done
end

This version makes it clear how last o stands for the previously defined value of o.
The next section explains why using pre in this example would have given quite different

results.

1.2.3 Pre versus Last

While last o may seem like just an alternative to pre o for referring to the previous value of
a stream, there is a fundamental difference between the two based on their respective instants
of observation.



• In Zélus, as in other block-diagram formalisms like Simulink and SCADE, pre e is a unit
delay through a local memory—it denotes the value that its argument had the last time it
was observed. If pre e is used in a block structure which is executed from time to time, for
example, when some condition c is true, the argument e is only computed when c is true:
pre e is the value of e the last time c was true.

• On the other hand, last o denotes the previous value of the variable o relative to the
sequence of instants where the variable o (it must be a variable and not an expression) is
defined. It is useful for communicating values between modes which is why it is called a
shared memory.

We augment the previous example with extra equations to illustrate the difference between
the two delay constructs. The two new streams c1 and c2 return respectively the number of
instants in which each mode is active.

let node two (m, i) = (o, c1, c2) where
rec init o = i
and init c1 = 0
and init c2 = 0
and match m with

| Up -> do o = last o + 1
and c1 = 1 -> pre c1 + 1
done

| Down -> do o = last o - 1
and c2 = 1 -> pre c2 + 1
done

end

The equation c1 = 1 -> pre c1 + 1 is only active in the Up mode, and the equation c2 = 1
-> pre c2 + 1 is only active in the Down mode. The execution diagram is given below.

i 0 0 0 0 0 0 0 · · ·
m Up Up Up Down Up Down Down · · ·
last o + 1 1 2 3 3 · · ·
1 -> pre c1 + 1 1 2 3 4 · · ·
last o - 1 2 2 1 · · ·
1 -> pre c2 + 1 1 2 3 · · ·
o 1 2 3 2 3 2 1 · · ·
last o 0 1 2 3 2 3 2 · · ·
c1 1 2 3 3 4 4 4 · · ·
c2 0 0 0 1 1 2 3 · · ·

Pattern matching composes complementary sub-streams. For instance, the match/with in
the previous example has two branches, and each defines its own clock, one for the instants
when m = Up and the other for the instants when m = Down.

1.2.4 Local Definitions

It is possible to define variables which are local to a branch. For example:



let node two (m, i) = o where
match m with
| Up -> let rec c = 0 -> pre c + 1 in

do o = c done
| Down -> do o = 0 done
end

or equivalently:

let node two (m, i) = o where
match m with
| Up -> local c in

do c = 0 -> pre c + 1
and o = c done

| Down -> do o = 0 done
end

Here, c is declared local to the first handler of the match/with statement. The compiler
verifies that a definition for c is given. Several variables can be declared local by writing
local c1,..., cn in ....

1.2.5 Implicit Completion of Shared Variables

The branches of a pattern-matching construct need not contain definitions for all shared
variables. Branches without a definition for a shared variable o are implicitly completed with
an equation o = last o.

The compiler rejects programs where it is unable to ensure that last o has an initial
value. The following program, for instance, is rejected.

let node two (m, i) = o where
rec match m with

| Up -> do o = last o + 1 done
| Down -> do o = last o - 1 done
end

File "tutorial.zls", line 3, characters 17-18:
> | Up -> do o = last o + 1 done
> ^
Initialization error: this expression has type 1
which should be less than
0.

1.3 Valued Signals

Zélus provides valued signals that are built and accessed, respectively, through the construc-
tions emit and present. At every instant, a valued signal is a pair comprising (1) a boolean
c indicating when the signal is present and (2) a value that is present when c is true.3

3For OCaml programmers: signals are like streams of an option type.



1.3.1 Signal Emission

Unlike shared variables, signal values are not necessarily defined at every instant, nor do they
implicitly keep their previous value when not updated. Consider this program, for instance:

let node within (min, max, x) = o where
rec c = (min <= x) & (x <= max)
and present c -> do emit o = () done

val within : ’a * ’a * ’a -D-> unit signal

It computes a condition c based on the input x. The signal o is present with value () every
time c is true. There is no need to give an initial value for o. When c is false, o is simply
absent. Removing the emit gives a program that the compiler rejects:

let node within (min, max, x) = o where
rec c = (min <= x) & (x <= max)
and present c -> do o = () done

File "tutorial.zls", line 3, characters 6-33:
> and present c -> do o = () done
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^
Type error: o is a value of type
unit, but is expected to be a signal
(maybe a default value or initialization is missing).

The output o is not declared as a shared variable (with init) nor is it defined as a signal
(with emit).

1.3.2 Signal Presence and Values

The presence of a signal expression e can be tested by the boolean expression ?e. The following
program, for example, counts the number of instants where x is emitted.

let node count x = cpt where
rec cpt = if ?x then 1 -> pre cpt + 1 else 0 -> pre cpt

val count : ’a signal -D-> int

There is also a more general mechanism to test signal presence that treats multiple signals
simultaneously and allows access to their values. It resembles the pattern-matching construct
of ML and it only allows signal values to be accessed at instants of emission.4

The program below has two input signals, x and y, and returns the sum of their values
when both are emitted, the value of x when it alone is emitted, the value of y when it alone
is emitted, and 0 otherwise.

let node sum (x, y) = o where
present
| x(v) & y(w) -> do o = v + w done

4Unlike in Esterel where signal values are maintained implicitly and can be accessed even in instants where
they are not emitted. The approach of Zélus is slightly more cumbersome, but it is safer and avoids initialization
issues and the allocation of a state variable.



| x(v) -> do o = v done
| y(w) -> do o = w done
else do o = 0 done
end

val sum : int signal * int signal -D-> int

A present statement comprises several signal patterns and handlers. The patterns are tested
sequentially from top to bottom. The signal condition x(v) & y(w) matches when both x
and y are present. The condition x(v) means “x is present and has some value v”. When x is
present, the variable v is bound to its value in the corresponding handler.

In the signal pattern x(v) & y(w), x and y are expressions that evaluate to signal values
and v and w are patterns. Writing x(42) & y(w) means “detect the presence of signal x with
value 42 and the simultaneous presence of y”.

The output of the preceding function is a regular stream since the test is exhaustive thanks
to the else clause. Omitting this default case results in an error.

let node sum (x, y) = o where
present
| x(v) & y(w) -> do o = v + w done
| x(v1) -> do o = v1 done
| y(v2) -> do o = v2 done
end

File "tutorial.zls", line 2-6, characters 2-108:
>..present
> | x(v) & y(w) -> do o = v + w done
> | x(v1) -> do o = v1 done
> | y(v2) -> do o = v2 done
> end
Type error: o is a value of type
int, but is expected to be a signal
(maybe a default value or initialization is missing).

This error is easily eliminated by giving a last value to o—for example, by adding the equation
init o = 0 outside the present statement. The default case is then implicitly completed with
o = last o. Another way is to state that o is a signal and thus only partially defined.

let node sum (x, y) = o where
present
| x(v) & y(w) -> do emit o = v + w done
| x(v1) -> do emit o = v1 done
| y(v2) -> do emit o = v2 done
end

val sum : int signal * int signal -D-> int signal

Signal patterns may also contain boolean expressions. The following program adds the
values of the two signals x and y if they are emitted at the same time and if z >= 0.



let node sum (x, y, z) = o where
present

x(v) & y(w) & (z >= 0) -> do o = v + w done
else do o = 0 done
end

Remark: Signals make it possible to mimic the default construction of the language Sig-
nal [4]. Signal’s default x y takes the value of x when x is present and the value of y when
x is absent and y is present. The signal pattern x(v) | y(v) tests the presence of “x or y”.

let node signal_default (x, y) = o where
present

x(v) | y(v) -> do emit o = v done
end

This is only a simulation of Signal’s behavior since all information about the instants where
x and y are present—the so-called clock calculus of Signal [4]—is hidden at run-time and not
exploited by the compiler. In particular, and unlike in the clock calculus of Signal, the Zélus
compiler cannot determine that o is emitted only when x or y are present.

Unlike Lustre, Lucid Synchrone and Signal, Zélus does not currently have a clock calculus.

1.4 Hierarchical State Machines

Zélus provides hierarchical state machines that can be composed in parallel with regular equa-
tions or other state machines as well as arbitrarily nested. State machines are essentially taken
as is from Lucid Synchrone and SCADE 6.5 They are compiled to data-flow equations [9].

In this tutorial, we first consider basic state machines where transition guards are limited
to boolean expressions. We then consider two important extensions. The first is the ability
to define state machines with parameterized states (section 1.4.3) and actions on transitions
(section 1.4.9). The second is a more general form of transitions with signal matching and
boolean expressions (section 1.4.11).

An automaton is a collection of states and transitions. Two kinds of transitions are pro-
vided: weak and strong. For each, it is possible to enter the next state by reset or by history.
An important feature of state machines in Zélus is that only one set of equations is executed
during any single reaction.

1.4.1 Strong Preemption

The following program contains a two state automaton with strong preemption, it returns
false until x becomes true and then it returns true indefinitely.

let node strong x = o where
automaton
| S1 -> do o = false unless x then S2
| S2 -> do o = true done
end

5http://www.esterel-technologies.com/products/scade-suite/

http://www.esterel-technologies.com/products/scade-suite/


val strong : bool -D-> bool

Each of the two states defines a value for the shared variable o. The keyword unless
indicates a strong transition: the automaton stays in the state S1 as long as x is false, and o
is defined by the equation o = false, but the instant that x becomes true, S2 becomes active
immediately, and o is defined by the equation o = true. Thus, the following timeline holds:

x false false true false false true · · ·
strong x false false true true true true · · ·

The guards of strong transitions are tested before determining which state is active at an
instant and executing its body.

1.4.2 Weak Preemption

The following program contains a two state automaton with weak preemption, it returns false
at the instant that x becomes true and then it returns true indefinitely; it is like a Moore
automaton.

let node expect x = o where
automaton
| S1 -> do o = false until x then S2
| S2 -> do o = true done
end

val expect : bool -D-> bool

This timeline of this program is shown below.

x false false true false false true · · ·
expect x false false false true true true · · ·

The guards of weak transitions are tested after executing the body of the current active
state to determine the active state at the next instant.

We now consider a two state automaton that switches between two states whenever the
input toggle is true.

let node weak_switch toggle = o where
automaton
| False -> do o = false until toggle then True
| True -> do o = true until toggle then False
end

For an example input stream, the timeline is:

toggle false true false false true true false · · ·
o false false true true true false true · · ·

The form with strong transitions follows.
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Figure 1.3: Automata with weak (at left) and strong (at right) transitions

let node strong_switch toggle = o where
automaton
| False -> do o = false unless toggle then True
| True -> do o = true unless toggle then False
end

Its behavior relative to the same input sequence differs.

toggle false true false false true true false · · ·
o false true true true false true true · · ·

In fact, for any boolean stream toggle the following property holds:

weak_switch toggle = strong_switch (false -> pre toggle)

The graphical representations of these two automata are shown in figure 1.3. The circles on
the transition arrows distinguish weak transitions from strong ones: they graphically separate
the actions of one instant from another. Since a weak transition is executed in the same
instants as its source state, the circle is placed to separate it from its destination state. Since
a strong transition is executed in the same instants as its destination state, the circle is placed
to separate it from its source state.

Remark: The current version of Zélus does not permit arbitrary combinations of weak and
strong transitions within an automaton as in Lucid Synchrone and SCADE 6. After much
experience with automata, we think that such arbitrary mixes give programs that are difficult
to understand. Future versions of Zélus may, however, allow a constrained mix of weak and
strong transitions.

1.4.3 Parameterized States

In the examples considered so far, each automaton had a finite set of states and transitions. It
is also possible to define more general state machines with parameterized states, that is, states
containing local values that are initialized on entry. Parameterized states are a natural way
to pass information between states and to reduce the number of explicitly programmed states.
Parameterized state machines lead to a style of programming that resembles the definition
of mutually tail-recursive functions in ML. Yet they are not compiled into mutually recursive
functions but into a single step function with a switch-like construct over the active state.

In the following function, the automaton waits in its initial state for the signal e. When
e is present, its value is bound to v and the automaton transitions to the state Sustain(v),
that is, to the state Sustain with parameter x set to v.



(* wait for e and then sustain its value indefinitely *)
let node await e = o where

automaton
| Await -> do unless e(v) then Sustain(v)
| Sustain(x) -> do emit o = x done
end

val await : ’a signal -D-> ’a signal

The formal parameter x of the Sustain state can be used without restriction in the body of
the state, and the variable v could just as well have been an expression.

As another example, the program below uses parameterized states to count the occurrences
of x. It simulates an infinite state machine with states Zero, Plus(1), Plus(2), etcetera.

let node count x = o where rec o = 0 -> pre o + 1

let node count_in_an_automaton x = o where
automaton
| Zero -> do o = 0 until x then Plus(1)
| Plus(v) -> do o = v until x then Plus(v+1)
end

val count : ’a -D-> int
val count_in_an_automaton : bool -D-> int

1.4.4 Modular Resets

Gérard Berry’s ABRO example highlights the expressive power of parallel composition and
preemption in Esterel. The specification is [5, §3.1]:

Emit an output O as soon as two inputs A and B have occurred. Reset this behavior
each time the input R occurs.

We will implement this example in Zélus—replacing uppercase letters by lowercase ones6—but
generalize it slightly by considering valued events.

As a first step, consider a function that implements the first part of the specification: it
waits for occurrences of both a and b using the await node from section 1.4.3 and then emits
the sum of their values.

let node abo (a, b) = o where
present (await a)(v1) & (await b)(v2) -> do emit o = v1 + v2 done

val abo : int signal * int signal -D-> int signal

This first version is readily extended to the full specification by putting it inside an automaton
state with a self-looping (weak) transition that resets it when r is true.

6As in OCaml, identifiers starting with an uppercase letter are considered to be data type constructors and
cannot be used as variable names.



present (await a)(v1) & (await b)(v2) -> do emit o = v1 + v2 done r

Figure 1.4: The ABRO automaton

let node abro (a, b, r) = o where
automaton
| S1 ->

do
present (await a)(v1) & (await b)(v2) -> do emit o = v1 + v2 done

unless r then S1
end

val abro : int signal * int signal * bool -D-> int signal

A graphical version is shown in figure 1.4. The transition on r resets the computation within
the state: all streams in abo a b, including those inside both await nodes, restart with their
initial values.

Zélus also provides a specific reset/every primitive as a shortcut for such a one-state
automaton. It combines a set of parallel equations (separated by ands). We could thus write:

let node strong_abro (a, b, r) = o where
reset

present (await a)(v1) & (await b)(v2) -> do emit o = v1 + v2 done
every r

val strong_abro : int signal * int signal * bool -D-> int signal

Except that reset/every is strongly preemptive; the body is reset before being executed at
the instant the condition is true. There is no “weak reset” since one need only add a unit delay
for the same effect. The following program implements the ABRO specification.

let node abro (a, b, r) = o where
reset

o = abo (a, b)
every true fby r

val abro : int signal * int signal * bool -D-> int signal

1.4.5 Local State Definitions

Names may be declared local to a state. Such names can only be used inside the body of the
state and in the guards of outgoing weak transitions.

The following program sums the integer sequence v and emits false until the sum has
reached some value max. Then, it emits true for n instants.

let node consume (max, n, v) = status where
automaton



| S1 ->
let rec c = v -> pre c + v in
do status = false
until (c = max) then S2

| S2 ->
let rec c = 1 -> pre c + v in
do status = true
until (c = n) then S1

end

State S1 defines a local variable c that is used to compute the weak condition c = max
without introducing any causality problems. Indeed, weak transitions only take effect in a
subsequent reaction: they define the next state, not the current one. Moreover, there is no
restriction on the kind of expressions appearing in conditions and they may, in particular,
have some internal state. For example, the previous program can be rewritten as:

let node sum v = cpt where
rec cpt = v -> pre cpt + v

let node consume (max, n, v) = status where
automaton
| S1 ->

do status = false
until (sum v = max) then S2

| S2 ->
do status = true
until (sum 1 = n) then S1

end

The body of a state comprises (possibly empty) sequences of local declarations (with
local/in), local definitions (with let/in), and definitions of shared variables (with do/until).
As noted previously, weak conditions may depend on local names and shared names.

In weak preemptions, as in the example above, transition conditions are evaluated after
the equations in the body have been evaluated. The untils in this example may not be
replaced with unlesss because in strong preemptions the transition conditions are evaluated
before the equations in the body and may not depend on them. Thus, writing

let node consume (max, n, v) = status where
automaton
| S1 ->

let rec c = v -> pre c + v in
do status = false
unless (c = max) then S2

| S2 ->
let rec c = 1 -> pre c + 1 in
do status = true
unless (c = n) then S1

end



causes the compiler to emit the message:

File "tutorial.zls", line 6, characters 14-15:
> unless (c = max) then S2
> ^
Type error: the global value identifier value c is unbound.

The variable c is not visible in the handler of the unless. The same problem occurs if c
is declared as a local variable, as in the following program.

let node consume (max, n, v) = status where
automaton
| S1 ->

local c in
do c = v -> pre c + v and status = false
unless (c = max) then S2

| S2 ->
local c in
do c = v -> pre c + v and status = true
unless (c = n) then S1

end

File "tutorial.zls", line 6, characters 14-15:
> unless (c = max) then S2
> ^
Type error: the global value identifier value c is unbound.

1.4.6 States and Shared Memory

In the previous examples, there is no communication between the values computed in each
state. We now consider the following simple system, due to Maraninchi and Rémond [16], of
two running modes.

let node two_states (i, min, max) = o where
rec automaton

| Up -> do o = last o + 1
until (o = max) then Down

| Down -> do o = last o - 1
until (o = min) then Up

end
and init o = i

In the Up mode, the system continually increments some value by 1 and in the Down mode,
it decrements the same value by the same amount. The transitions between these two modes
are described by a two-state automaton whose behavior depends on the value computed in
each mode. The system’s execution diagram is



i 0 0 0 0 0 0 0 0 0 0 0 0 . . .
min 0 0 0 0 0 0 0 0 0 -1 0 0 . . .
max 4 4 4 4 4 4 4 4 4 4 4 4 . . .
o 1 2 3 4 3 2 1 0 -1 0 1 2 . . .
last o 0 1 2 3 4 3 2 1 0 -1 0 1 . . .
last o + 1 1 2 3 4 0 1 2 . . .
last o - 1 3 2 1 0 -1 . . .

As for match/with and present, an implicit completion mechanism applies so that vari-
ables like o need not be explicitly defined in all automaton states. When an equation is not
given, the shared variable keeps its previous values. In other words, an equation o = last o
is assumed.

1.4.7 The Initial State

The initial automaton state can be used to define the values of variables that are shared
across the other states. Such variables are considered to have a last value that can be accessed
through the last operator. And, thanks to o = last o completion, explicit definitions can
be omitted in other states.

let node two_states (i, min, max) = o where
rec automaton

| Init ->
do o = i until (i > 0) then Up

| Up ->
do o = last o + 1
until (o = max) then Down

| Down ->
do o = last o - 1
until (o = min) then Up

end

i 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 . . .
min 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 . . .
max 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 . . .
o 0 0 0 1 2 3 4 3 2 1 0 -1 0 1 2 . . .
last o 0 0 0 0 1 2 3 4 3 2 1 0 -1 0 1 . . .
last o + 1 0 0 0 1 2 3 4 0 1 2 . . .
last o - 1 0 0 0 3 2 1 0 -1 . . .

As the initial state Init is only weakly preempted, o is necessarily initialized with the
current value of i. Thus, last o is well defined in the remaining states. Replacing weak
preemption by strong preemption results in an error.

let node two_states (i, min, max) = o where
rec automaton

| Init ->
do o = i unless (i > 0) then Up

| Up ->



do o = last o + 1
unless (o = max) then Down

| Down ->
do o = last o - 1
unless (o = min) then Up

end

File "tutorial.zls", line 7, characters 18-19:
> unless (o = max) then Down
> ^
Causality error: This expression has causality type
’a, whereas it should be less than ’b
Here is an example of a cycle:
a < b; b < a

As explained in section 1.4.5, the guards of strong transitions may not depend on variables
computed in the current state. They may depend, however, on a shared memory last o, as
in:

and automaton
| Init ->

do o = i unless (i > 0) then Up
| Up ->

do o = last o + 1
unless (last o = max) then Down

| Down ->
do o = last o - 1
unless (last o = min) then Up

end

giving the same execution diagram as before:

i 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 . . .
min 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 . . .
max 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 . . .
o 0 0 0 1 2 3 4 3 2 1 0 -1 0 1 2 . . .
last o 0 0 0 0 1 2 3 4 3 2 1 0 -1 0 1 . . .
last o + 1 0 0 0 1 2 3 4 0 1 2 . . .
last o - 1 0 0 0 3 2 1 0 -1 . . .

An initial state may be parameterized if an explicit initialization clause is added to the
automaton. For example, the following two state automaton starts in state Run(incr) with
incr initialized to the first value of i0.

let node two_states(i0, idle, r) = o where
rec automaton

| Run(incr) ->
do o = 0 fby o + incr until idle() then Idle

| Idle ->
do until r(incr) then Run(incr)

init Run(i0)

val two_states : int * unit signal * int signal -D-> int



1.4.8 Resuming a State

By default, the computations within an automaton state are reset when it is entered. So, for
instance, the counters in the states of the example below are reset on every transition.

let node time_restarting c = (x, y) where
rec automaton

| Init ->
do x = 0 and y = 0 then S1

| S1 ->
do x = 0 -> pre x + 1 until c then S2

| S2 ->
do y = 0 -> pre y + 1 until c then S1

end

val time_restarting : bool -D-> int * int

Giving the execution trace (where we write F for false and T for true):

c F F F F T F T F F F F T T F F F

x 0 0 1 2 3 3 3 0 1 2 3 4 4 0 1 2
y 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

Note that the transition from the initial state, do x = 0 and y = 0 then S1, is shorthand
for do x = 0 and y = 0 until true then S1.

It is also possible to enter a state without resetting its internal memory (as in the entry-
by-history of StateCharts) using the continue transitions. The modified example,

let node time_sharing c = (x, y) where
rec automaton

| Init ->
do x = 0 and y = 0 continue S1

| S1 ->
do x = 0 -> pre x + 1 until c continue S2

| S2 ->
do y = 0 -> pre y + 1 until c continue S1

end

val time_sharing : bool -D-> int * int

has the execution trace:

c F F F F T F T F F F F T T F F F

x 0 0 1 2 3 3 3 4 5 6 7 8 8 9 10 11
y 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2

This is a way of writing activation conditions. It is convenient, for instance, for program-
ming a scheduler which alternates between different computations, each of them having its
own state.



1.4.9 Actions on Transitions

It is possible to perform an action on a transition. As an example, consider programming a
simple mouse controller with the following specification.

Return the event double whenever two clicks are received in less than four tops.
Emit simple if only one click is received within the interval.

Here is one possible implementation:

let node counting e = cpt where
rec cpt = if e then 1 -> pre cpt + 1 else 0 -> pre cpt

val counting : bool -D-> int

let node controller (click, top) = (simple, double) where rec
automaton
| Await ->

do simple = false and double = false until click then One
| One ->

do until click then do simple = false and double = true in Await
else (counting top = 4) then

do simple = true and double = false in Await
end

val controller : bool * bool -D-> bool * bool

This program waits for the first occurrence of click, then it enters the One state and
starts to count the number of tops. This state is exited when a second click occurs or when
the condition counting top = 4 becomes true.

Note that the One state has two outgoing weak transitions (the second prefixed by else.
As for the present construct, transition guards are evaluated in order from top to bottom.
The first to be satisfied is triggered.

click F T F T F T F F F F F F F F

top T F T F T T F T T T F T T F

simple F F F F F F F F F F F T F F

double F F F T F F F F F F F F F F

Any set of equations can be placed between the do/in of a transition, exactly as between
a do/until or do/unless.

1.4.10 Signals and State Machines

In the automata considered until now, the conditions on transitions have been boolean expres-
sions. The language also provides a more general mechanism for testing signals and accessing
their values on transitions.

Using signals, we can reprogram the mouse controller of the previous section as follows.



type event = Simple | Double

let node controller (click, top) = o where
automaton
| Await ->

do until click then One
| One ->

do until click then do emit o = Double in Await
else (counting top = 4) then do emit o = Simple in Await

end

type event = | Double | Simple
val controller : bool * bool -D-> event signal

This time no variables are defined in state Await. Writing emit o = x means that o is
a signal and not a regular stream, there is thus no need to define it in every state of the
automaton nor to declare a last value. The signal o is only emitted in state Emit. Otherwise,
it is absent.

click F T F T F T F F F F F F F F

top T F T F T T F T T T F T T F

o Double Simple

Combining signals with a sum type, as is done here, has some advantages over the use
of boolean variables in the original program. By construction, only three values are pos-
sible for the output: o can only be Simple, Double or absent. In the previous version, a
fourth case corresponding to the boolean value simple & double is possible, even though it
is meaningless.

1.4.11 Pattern Matching over Signals

The signal patterns introduced in section 1.3.2 for the present construct may also be used in
transition conditions to combine signals and access their values.

Consider, for example, the system below that has two input signals inc and dec, and that
outputs a stream of integers o.

let node switch (inc, dec) = o where
rec automaton

| Init ->
do o = 0
until inc(u) then Up(u)
else dec(u) then Down(u)

| Up(u) ->
do o = last o + u
until dec(v) then Down(v)

| Down(v) ->
do o = last o - v
until inc(u) then Up(u)

end



val switch : int signal * int signal -D-> int

The condition until inc(u) means: await the presence of the signal low with some
value u, then transition to the parameterized state Up(u).

A basic preemption condition has the form e(p) where e is an expression of type t sig
and p is a pattern of type t. The condition binds the variables in the pattern p from the value
of the signal at the instant when e is present. In the above example, for instance, the variable
u is introduced and bound over the rest of the transition. A test for signal presence can be
combined with a boolean condition. For example,

let node switch (inc, dec) = o where
rec automaton
| Init ->

do o = 0
until inc(u) then Up(u)
else dec(u) then Down(u)

| Up(u) ->
let rec timeout = 0 -> pre timeout + 1 in
do o = last o + u
until dec(v) & (timeout > 42) then Down(v)

| Down(v) ->
let rec timeout = 0 -> pre timeout + 1 in
do o = last o - v
until inc(u) & (timeout > 42) then Up(u)

end

val switch : int signal * int signal -D-> int

This system has the same behavior except that the presence of dec in the Up state is only
taken into account when the timeout stream has passed the value 42.

1.5 Alternative Syntax for Control Structures

Each of the three control structures (match/with, automaton, and present) combines equa-
tions. Each branch comprises a set of equations defining shared values. In this form, it is not
necessary to explicitly define all shared variables in every branch since they implicitly keep
their previous value or, for signals, become absent.

This syntactical convention mirrors the graphical representation of programs in synchronous
dataflow tools (like SCADE). In such tools, control structures naturally combine (large) sets
of equations and the implicit completion of absent definitions is essential.

The language also provides a derived form that allows control structures to be used in
expressions. For example,

let node two x =
match x with | true -> 1 | false -> 2

can be written as a shorthand for



let node two x =
let match x with

| true -> do o = 1 done
| false -> do o = 2 done
end in

o

This notation is more conventional for OCaml programmers. A similar shorthand exists for
the present and automaton constructs. One can write, for instance,

let node toggle x = y where
rec y =

automaton
| S0 -> do 0 until x then S1
| S1 -> do 1 until x then S0

1.6 Real Time versus Logical Time

We close the chapter on synchronous programming with an example real-time controller that
tracks the passage of time using counters that then influence the running mode. This example
highlights the difference between the idea of logical time considered thus far and that of
real-time.

Consider a light that blinks according to the specification:

Repeat the following behavior indefinitely: Turn a light on for n seconds and then
off for m seconds. Allow it to be restarted at any instant.

One way to start implementing this specification is to define a boolean signal called second
that is true at every occurrence of a second, whatever that may mean, and false otherwise. We
then define a node called after_n(n, t) that returns true when n true values are counted
on t. This is then instantiated twice in a node called blink_reset containing an automaton
with two modes wrapped by a reset construct.

let node after_n(n, t) = (cpt >= n) where
rec tick = if t then 1 else 0
and ok = cpt >= n
and cpt = tick -> if pre ok then n else pre cpt + tick

let node blink_reset (restart, n, m, second) = x where
reset

automaton
| On -> do x = true until (after_n(n, second)) then Off
| Off -> do x = false until (after_n(m, second)) then On

every restart

The type signatures inferred by the compiler are:

val after_n : int * bool -D-> bool
val blink_reset : bool * int * int * bool -D-> bool



Does after_n(n, second) really give a delay of n real-time seconds? No, for two reasons
(see also [7]):

1. second is a Boolean stream. No hypothesis is made or ensured by the compiler about
the actual real-time duration between two occurrences of true in the stream. It is up to
the implementation to ensure that second correctly approximates a real second.

2. The counting of instants in the expression after_n(n, t) is only performed when the
expression is active, that is, it returns true when n occurrences of the value true have
been observed. This can be less than the number of occurrences of the value true of
n. E.g., instantiating blink_reset within a branch of an automaton or match that is
activated from time to time.

In this chapter, time is logical meaning that we count number of occurrences. We shall
see in the next chapter how to connect it with physical time.



Chapter 2

Hybrid Systems Programming

In this chapter we introduce the main novelty of Zélus with respect to standard synchronous
languages: all of the previously introduced constructs, that is, stream equations and hierar-
chical automata, can be combined with Ordinary Differential Equations (ODEs). As before,
we only present basic examples in this document. More advanced examples can be found on
the examples web page.1

2.1 Initial Value Problems

Consider the classic Initial Value Problem that models the temperature of a boiler. The
evolution of the temperature t is defined by an ODE and an initial condition:

ṫ = g0 − g1 · t
t(0) = t0

where g0 and g1 are constant parameters and t0 is the initial temperature. Instead of choosing
an explicit integration scheme as in section 1.1.8, we can now just write the ODE directly:

let hybrid heater(t0, g0, g1) = t where
rec der t = g0 -. g1 *. t init t0

val heater : float * float * float -C-> float

The der keyword defines t by a (continuous) derivative and an initial value. Notice that the
hybrid keyword is used here rather than node. It signifies the definition of a function between
continuous-time signals. This is reflected in the type signature inferred by the compiler with
its -C-> arrow. The C stands for “continuous” Hybrid functions need special treatment for
simulation with a numeric. Discrete nodes, on the other hand, evolve in logical time, that is,
as a sequence of instants, and may not contain any nested continuous-time computations.

As a second example of the new features, consider the following continuous definition of
the sine and cosine signals whose stream approximation was given in section 1.1.6:

let hybrid sin_cos theta = (sin, cos) where
rec der sin = theta *. cos init 0.0
and der cos = -. theta *. sin init 1.0

1http://zelus.di.ens.fr/examples.html
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val sin_cos : float -C-> float * float

Are these definitions really all that different from those in the previous chapter? Yes!

The dynamics of the boiler temperature and those of the sine and cosine signals are now
defined by ODEs, and a numeric solver is used to approximate their continuous-time trajec-
tories. The choice of the solver is independent of the model and made outside the language.
Programs are defined at a higher level of abstraction, leaving the choice of an integration
scheme to the numerical solver. In particular, signals are not necessarily integrated using a
fixed-step explicit scheme like that coded manually in section 1.1.8. It is possible to program
models that mix discrete-time computations with ODEs and to simulate them together using
an external solver.

Remark: The compiler generates sequential code that allows ODEs to be approximated
by a numerical solver. The current version of Zélus provides an interface to the Sundials
CVODE2 [13] solver and two classical variable step solvers (ode23 and ode45 [11]).

A Proportional Integral (PI) controller is a classic example of a continuous-time func-
tion. Below we present two implementations: a continuous version to be approximated by an
external numeric solver, and a discrete version using forward Euler integration.

(* a continuous-time integrator *)
let hybrid integr(x0, x’) = x where

rec der x = x’ init x0

(* a continuous-time PI controller *)
let hybrid pi(kp, ki, error) = command where

rec command = kp *. error +. ki *. integr(0.0, error)

let ts = 0.05

(* a explicit Euler integration *)
let node disc_integr(y0, x’) = y where

rec y = y0 -> last y +. ts *. x’

(* a discrete-time PI controller *)
let node disc_pi(kp, ki, error) = cmd where

rec cmd = kp *. error +. ki *. disc_integr(0.0, error)

val integr : float * float -C-> float
val pi : float * float * float -C-> float
val ts : float
val disc_integr : float * float -D-> float
val disc_pi : float * float * float -D-> float

2.2 Mixing Discrete and Continuous Signals

Care must be taken when mixing signals and systems defined in discrete logical time with
those defined in continuous time, both to ensure that programs make sense and that they can

2https://computation.llnl.gov/casc/sundials/main.html

https://computation.llnl.gov/casc/sundials/main.html
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(a) N ⊆ R (b) depends on solver (c) infinitesimal steps

Figure 2.1: Possible interpretations of the wrong1 program.

be simulated effectively. Consider, for instance, the following simple program.

let hybrid wrong1() = o where
rec der x = 1.0 init 0.0
and o = 0.0 -> pre o +. x

The signal x is continuous and o is discrete (due to the -> and pre operators). What can it
mean to put them in parallel in this way? The meaning of x along is clear: ∀t ∈ R+, x(t) = t.
It is shown in the three diagrams of figure 2.1 as a blue line that increases from zero with a
constant slope. Each of the diagrams shows a different interpretation for o:

(a) Since the discrete reactions can be numbered by the natural numbers and these numbers
are a subset of the reals, we could decide to simply embed the discrete reactions at times
0.0, 1.0, 2.0, etcetera. The value of o is then perfectly well defined (the red dots in the
figure), but the mapping of reactions to continuous time is completely arbitrary.

(b) Since a numeric solver must inevitably approximate continuous signals over a sequence
of discrete steps, we could decide to execute discrete equations at the sampling instants
chosen by the solver. This mapping of reactions is less arbitrary since it corresponds to
the underlying discrete solver process, but the meaning of a program now depends on
low-level details of the numerical simulation. Changing the solver or its parameters, or
adding another unrelated equation in parallel will likely change the value of o.

(c) A third possibility is to consider that the process corresponding to o is iterated contin-
ually, that is, as time advances infinitesimally. Although the value of o rapidly diverges
toward infinity, it is well defined. The real problem is that such programs cannot be
effectively simulated using numeric techniques.

We do not consider any of these three alternatives as acceptable. Instead, the compiler rejects
wrong1 as invalid:



File "tutorial.zls", line 3, characters 10-27:
> and o = 0.0 -> pre o +. x
> ^^^^^^^^^^^^^^^^^
Type error: this is a discrete expression and is expected to be continuous.

Similarly, a second program,

let hybrid wrong2() = o where
rec der x = o init 0.0
and o = 0.0 -> pre o +. 1.0

is also rejected as meaningless because o should be the discrete-time signal ∀n ∈ N, o(n) = n
which cannot be integrated to produce x.

2.2.1 Typing Constraints.

The restrictions on mixing combinatorial, discrete-time, and continuous-time constructs are
formalized as a typing system that statically accepts or rejects programs.

Every expression is associated to a kind k ∈ {A, D, C}. During typing, the compiler ensures
that the following rules are satisfied:

1. The body of a combinatorial function (see section 1.1.4) must be of kind A. The body
of a stateful function (declared as a node; see section 1.1.5) must be of kind D. Finally,
the body of a continuous-time function (declared with the hybrid keyword) must be of
kind C.

2. When the parallel composition of two (sets of) equations “E1 andE2” is expected to
have kind k, then E1 and E2 must both also be of the same kind k. For instance, if
E1 andE2 is expected to be combinatorial (k = A) then E1 and E2 must also both be
combinatorial; if E1 andE2 is discrete (k = D) then both E1 and E2 must be discrete.
Finally, if E1 andE2 is continuous (k = C) then both E1 and E2 must be continuous.

3. Any combinatorial equation or expression can be treated as either a discrete or a con-
tinuous one. In other words, A is a subkind of both D and C.

Thus, all sub-expressions in the body of a combinatorial function must be of kind A. All
sub-expressions in the body of a node must be of kind A or of kind D. All sub-expressions in
the body of a hybrid node must be of kind A or of kind C.

In addition to these basic rules, a computation with kind D can be placed in parallel with
an expression of kind C provided it is sampled on a discrete clock. We adopt the following
convention:

A clock is termed discrete if it has been declared so or if it is the result of a zero-
crossing or a sub-sampling of a discrete clock. Otherwise, it is termed continuous.

For example, the following function which composes an ODE and a discrete-time computation
is correct. The value of x is added to that of o at every instant where tick is present. Between
ticks, o is unchanged.

let hybrid correct(tick) = o where
rec der x = 1.0 init 0.0
and present tick -> do o = last o +. x done
and init o = 0.0
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Figure 2.2: Interpretation of the (newly) correct program.

val correct : zero -C-> float

The input tick has type zero, the type of zero-crossing events which are explained in the
next section. The interpretation of this program is sketched in figure 2.2. The instants of
activation of tick are generated (elsewhere) by monitoring a continuous expression. The
value of o (in red) is recalculated at these instants by sampling the value at x and adding it
onto the previous value, it is otherwise unchanged (that is, piecewise constant).

A formal presentation of the typing rules described in this section is available [2].

2.2.2 Zero-crossing Events

Zero-crossings are a standard mechanism used by numeric solvers to detect significant events.
A solver recalculates the values of a set of zero-crossing expressions at each new approximation
of the continuous state of a system. When one of the expressions changes sign between
two successive approximations, the solver iterates to try to pinpoint the instant when the
expression is equal to zero.

In Zélus, a zero-crossing expression is declared by the operator up(e). The language
runtime detects when the value of the expression e changes from a negative value to a positive
one during integration. The resulting events can be used to reset ODEs as illustrated in the
following, classic example of a bouncing ball.

Consider a ball with initial position (x0, y0) and initial speed (x′0, y
′
0). Every time the ball

hits the ground, it bounces but looses 20% of its speed. An example trajectory is depicted
in figure 2.3.

The source program is shown below. This version is slightly simplified compared to the
version3 giving rise to figure 2.3: the steps are not modeled and we consider that the ground
is at y = 0. We will reconsider this detail when we reprogram the example in section 2.3.

let g = 9.81
let loose = 0.8
3http://zelus.di.ens.fr/examples.html#ex-bouncingball

http://zelus.di.ens.fr/examples.html#ex-bouncingball


Figure 2.3: The Bouncing Ball

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where
rec der x = x’ init x0
and der x’ = 0.0 init x’0
and der y = y’ init y0
and der y’ = -. g init y’0 reset up(-. y) -> -. loose *. last y’

val bouncing : float * float * float * float -C-> float * float

The ODE defining y’ is reset every time -.y crosses zero. At this precise instant, the
initial value of y’ is -. loose *. last y’. Exactly as in chapter 1, last y’ is the value
of y’ at the previous instant. But the notion of previous instant for a continuous-time signal
requires clarification. Mathematically, at the instant of a reset, we need to distinguish the
value of y’ just before the reset and the new value that y’ takes at the instant of the reset.
As y’ is a continuous-time signal, last y’ is the left limit of y’. It corresponds to the value
of y’ computed during the integration process just preceding the discrete reaction that resets
y’.

Replacing last y’ by y’ leads to an error of causality. Indeed, the current value of y’
would then depend instantaneously on itself. The compiler statically rejects such programs:

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where
rec der x = x’ init x0
and der x’ = 0.0 init x’0
and der y = y’ init y0
and der y’ = -. g init y’0 reset up(-. y) -> -. loose *. y’

File "tutorial.zls", line 5, characters 5-60:
> and der y’ = -. g init y’0 reset up(-. y) -> -. loose *. y’
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Causality error: This expression has causality type
’a, whereas it should be less than ’b
Here is an example of a cycle:
y’ at ’b < y’ at ’b



0 1 2 3 4 5

-1

0

1

2

Figure 2.4: Trace of the sawtooth program.

The sawtooth signal shown in figure 2.4 is another example of an ODE with reset. The
signal x : R+ 7→ R+ is defined such that dx

dt (t) = 1 and x(t) = 0 if t ∈ N, or as a hybrid node:

let hybrid sawtooth() = x where
rec der x = 1.0 init 0.0 reset up(last x -. 1.0) -> 0.0

val sawtooth : unit -C-> float

Each time last x -. 1.0 crosses zero from a negative to positive value, x is reset to zero.
Note also the use of last to break what would otherwise be an invalid causality cycle.

2.2.3 Periodic Timers

A particular form of zero-crossings is provided to model timers. A timer with phase phase
and period p generates an event at every instant where t = phase+ n · period with n ∈ N+.
While such timers can be expressed directly using the features described in the previous two
sections,

let hybrid timer(phase, p) = z where
rec der t = 1.0 init -. phase reset z -> -. p
and z = up(last t)

val timer : float * float -C-> zero

Zélus also provides a special period operator, which, for the moment at least, is restricted
to timers of constant phase and period. For example, for a timer with phase = 10.3 and
p = 20.5 one can write period 10.3(20.5). Such timers are not realized using zero-crossings,
but rather by a dedicated and more efficient mechanism. At every discrete transition, the
minimal ‘next value’ of all timers is computed to define the next integration horizon.

2.3 Hierarchical Automata and ODEs

We now illustrate how to combine ODEs with hierarchical automata using as an example,
an hysteresis controller for a heater. We will first consider the heater dynamics. It has two
modes: when active is true, the temperature increases; when active is false, it decreases.
The hysteresis controller also has two modes. In the Idle mode, it outputs active = false
until the temperature temp reaches the lower threshold t_min. The controller then stays in the



Active mode until temp reaches the upper threshold t_max. The complete system is obtained
by composing the heater and controller in parallel. Observe that the boolean signal active
only changes when a zero-crossing occurs. This is a property guaranteed by the type system
for all discrete (non-float) data types.

let c = 1.0
let k = 1.0
let temp0 = 0.0
let t_min = 0.0
let t_max = 1.0

(* an hysteresis controller for a heater: [c] and [k] are constant. *)
let hybrid heater(active) = temp where

rec der temp = if active then c -. k *. temp else -. k *. temp init temp0

let hybrid hysteresis_controller(temp) = active where
rec automaton

| Idle -> do active = false until (up(t_min -. temp)) then Active
| Active -> do active = true until (up(temp -. t_max)) then Idle

let hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)

The biggest difference between the automaton in the program above and those of previous
programs is in the transition guards. The transition conditions of automata in a continuous
context—that is, of kind C—may be either signal patterns, as described in section 1.4.11,
or zero-crossing expressions, as in the example above. Notably, however, they may not be
boolean expressions, though boolean expressions may still be combined with signal patterns.
The equations within mode bodies inherit the kind of the automaton. In this example, we
simply define active using constant expressions, but it would also have been possible to define
signals by their derivatives (using der).

As always (continuous) automata may be nested hierarchically and composed in parallel.
The extra structure is compiled away to generate a function that computes the temperature
temp in tandem with a numeric solver and that monitors the active zero-crossing expression.
The type system for automata [3] guarantees that mode changes will only occur at discrete
instants, that is, in response to zero-crossing or timer events.

The ability to program with both automata and ODEs gives a restricted form of the
hybrid automata of Maler, Manna, and Pnueli [15]. In particular, hybrid automata in Zélus
are deterministic:

1. When several transitions can be fired, for example because several conditions are true,
the first one in order is taken.

2. It is not possible to associate an invariant with a state. The current state is exited when
a condition on an outgoing transition fires.



We will present a slightly more complicated hybrid automata by returning to the bouncing
ball example of section 2.2.2. First we reprogram the vertical dynamics of the ball, this time
using an external function, World.ground(), to retrieve the height of the ground as a function
of the horizontal position.

(* [World.ground(x)] returns the position in [y] *)

let x_0 = 0.0
let y_0 = 8.0
let x_v = 0.72
let g = 9.81
let loose = 0.8

(* The bouncing ball *)
let atomic hybrid ball(x, y_0) = (y, y_v, z) where

rec der y = y_v init y_0
and der y_v = -. g init 0.0 reset z -> (-. loose *. last y_v)
and z = up(World.ground(x) -. y)

val x_0 : float
val y_0 : float
val x_v : float
val g : float
val loose : float
val ball : float * float -C-> float * float * zero

We now incorporate these dynamics into an automaton with two modes. In Bouncing, it
behaves as explained previously but for two details. When the velocity of the ball drops below
a certain threshold, the system enters a Sliding mode and we gradually reduce the horizontal
velocity. When Sliding, the ball only moves in the vertical dimension, until it reaches the
edge of a step (as determined by a World.ground_abs() function).

let eps = 0.01

hybrid ball_with_modes(x_0, y_0) = (x, y) where
rec init y_start = y_0
and der x = x’ init x_0
and
automaton
| Bouncing ->

(* the ball is falling with a possible bounce. *)
local z, y_v in
do

(y, y_v, z) = ball(x, y_start)
and x’ = x_v until z on (y_v < eps) then Sliding(World.ground_abs(x),

World.ground(x))
| Sliding(x0, y0) ->

(* the ball is fixed, i.e., the derivative for y is 0 *)



do
y = y0

and der x’ = -0.8 *. x’
until up(x -. x0) then do y_start = y in Bouncing

end

val eps : float
val ball_with_modes : float * float -C-> float * float

This example demonstrates the hierarchical instantiation of hybrid nodes, the use of local
variables in modes, shared variable resets on transition actions (...then do y_start = 0.0
in...) and a new on operator of type zero * bool -> zero which combines zero-crossing
expressions and boolean conditions. The on operator emits an event when the zero-crossing
occurs and the condition evaluates to true at that instant.

Futher examples are available online4 and in published papers [6].

4http://zelus.di.ens.fr/examples.html

http://zelus.di.ens.fr/examples.html


Chapter 3

Compilation and Simulation

This chapter explains the basic principles behind the compilation and execution of Zélus
programs. Understanding these details is useful for linking Zélus and OCaml code, either by
importing OCaml values into Zélus or by exporting compiled Zélus code into OCaml.

3.1 Combinatorial Functions

Combinatorial functions are defined by the form:

[ let ] [ fun ] ident pattern = result-expr

They are compiled directly into OCaml functions without any particular transformations.

3.2 Sequential Nodes

Synchronous, possibly stateful, functions are defined by the form:

[ let ] [ node ] ident pattern = result-expr

They are translated as follows:

• A record type ident is introduced to represent the current value of the node’s internal state.
Such records contains fields for each unit delay and -> within the node, and also for every
other node instantiated within it. Values of this type are thus trees of nested records that
reflect the structure of instantiations.

• A step function ident_step is introduced. Calling ident_step self pattern, where self is the
current state of the node (of type ident) and pattern passes the current value of the input,
returns the current output of the node and directly updates the state record self.

• A reset function ident_reset is also introduced. Calling ident_reset self resets the state self
to its initial value.

• Finally, there is also an allocation function ident_alloc () which returns an initial state (of
type ident).
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Figure 3.1: Basic structure of the hybrid simulation algorithm

3.3 Hybrid Nodes and Interaction with a Solver

Hybrid nodes are also compiled into several functions. Their execution requires run-time
support to coordinate phases of integration by a numeric solver with the execution of discrete
reactions. Before outlining the form of compilation, we describe the principles behind the
simulation loop provided by the run-time.

The simulation loop of a hybrid system can be formalized as a synchronous function that
defines four streams lx (n), y(n), z(n) and t(n), with n ∈ N. Here, t(n) is the increasing
sequence of simulation times at which the solver stops;1 lx (n) is the value at time t(n) ∈ R
of the continuous state variables, that is, the variables defined by their derivatives in the
original model; y(n) is the value at time t(n) of the model’s discrete state; and z(n) signals
any zero-crossings occurring at instant t(n).

The simulation loop function has two modes: discrete (D) and continuous (C). The two
modes and the transitions between them are sketched in figure 3.1. The function begins
in D, where all computations that may change the discrete state or that have side effects are
executed. Several discrete steps may be executed without advancing the simulation time t in
what is termed an event cascade. Simulation time is advanced in C where a numeric solver
is invoked to approximate the values of ODEs within the model. The function loops back to
the D mode whenever a zero-crossing occurs (section 2.2.2) or a timer horizon (section 2.2.3)
is reached. We now formalize the details of the two modes.

The Continuous Mode (C) In the continuous mode C, a numeric solver computes an
approximation of the solution of the set of (active) ODEs within a model. We represent the
solver abstractly as a function solve(f)(g) parameterized by two other functions f and g:

• x′(τ) = f(y(n), τ, x(τ)) yields the derivatives of continuous state variables x at τ ∈ R,
given the discrete states y(n) and an approximation to the continuous states x(τ);

• upz (τ) = g(y(n), τ, x(τ)) computes the value of the zero-crossing expressions upz given
the same arguments as f .

For a given f and g, the continuous mode C computes s, lx , z, and t such that:

(lx , z, t, s)(n+ 1) = solve(f)(g)(s, y, lx , t, step)(n)

where
1They are called major time steps in Simulink.



s(n) is the internal state of the solver at instant t(n) ∈ R. Calling solve(f)(g) updates the
state to s(n+ 1).

lx (n) is the value of x at instant t(n), that is, lx (n) = x(t(n)); lx is a discrete-time signal
while x is a continuous-time signal.

t(n+1) is bounded by the horizon given to the solver t(n) + step(n), that is,

t(n) ≤ t(n+ 1) ≤ t(n) + step(n)

x is a solution of an ODE, parameterized by the current discrete state y(n), that is:

∀T ∈ [t(n), t(n+ 1) +margin] x(T ) = lx (n) +

∫ T

t(n)
f(y(n), τ, x(τ))) dτ

Integration is performed on an interval strictly larger than [t(n), t(n+ 1)] to account
for possible zero-crossings at instant t(n + 1). The constant margin is considered
as a parameter of the solver. In practice, solve(f)(g) computes a finite sample of
approximated values on the interval [t(n), t(n+1) +margin]. The value of lx (n + 1)
is

lx (n+ 1) = x(t(n+ 1))

z(n+1) signals any zero-crossings detected at time t(n + 1). It comprises k ∈ N boolean
elements z(n+ 1)(i) such that:

z(n+ 1)(i) =
(∀T ∈ [t(n), t(n+ 1)) upz(T )(i) < 0)
∧
∃m ≤ margin.(∀T ∈ [t(n+ 1), t(n+ 1) +m] upz(T )(i) ≥ 0)

This definition assumes that the solver also stops whenever a zero-crossing expression
passes through zero from positive to negative. An event occurs with a transition to
the discrete phase (D) when a zero-crossing occurs or the horizon t(n) + step(n) is
reached:

event = z(n+ 1)(0) ∨ · · · ∨ z(n+ 1)(k) ∨ t(n+ 1) = t(n) + step(n)

If the solver raises an error (for example, a division by zero occurs, or a suitable approximation
cannot be found), we consider that the simulation fails.

The Discrete Mode (D) All discrete changes occur in this mode. It is entered when an
event occurs during integration. During a discrete phase, the function next defines y, lx , step,
encore, z, and t:

(y, lx , step, encore)(n+ 1) = next(y, lx , z, t)(n)

z(n+ 1) = false

t(n+ 1) = t(n)

where:



y(n+ 1) is the new discrete state (outside of mode D, y(n+ 1) = y(n));

lx (n+ 1) is the new continuous state, which may be directly changed in the discrete mode;

step(n+ 1) is the new step size;

encore(n+1) is true if an additional discrete step must be performed. Function next can decide
to trigger another discrete event instantaneously causing an event cascade.

t(n) (the simulation time) is unchanged during a discrete phase.

The initial values for y(0), lx (0) and s(0) are given by an initialization function init. Fi-
nally, solve(f)(g) may decide to reset its internal state when the continuous state changes. If
init_solve(lx (n), s(n)) initializes the solver state, then we have:

reinit = (lx (n+ 1) 6= lx (n))

s(n+ 1) = if reinit then init_solve(lx (n+ 1), s(n)) else s(n)

These definitions give a synchronous interpretation of the simulation loop, seen as a stream
function that iteratively computes the sequences lx , y and t at instant n+ 1 relative to their
values at instant n and an internal state. By writing solve(f)(g), we abstract the actual
choices of the integration method and zero-crossing detection algorithms. A more detailed
description of solve(f)(g) would be possible (for example, as an automaton with two states:
one that integrates, one that detects zero-crossings) but these details have no influence on the
code generation problem which is independent of such simulation details.

Hybrid functions are defined by the form:

[ let ] [ hybrid ] ident pattern = result-expr

They are compiled into six functions:

• A record type ident is introduced to represent the current value of the function’s internal
state. In addition to fields for each unit delay, -> operator, and node instantiation within
the function body, it also contains fields for continuous state variables (those defined with
der) and zero-crossing expressions (those registered with up()).

• A step function ident_step is introduced. Calling ident_step self pattern, where self is the
current state of the node (of type ident) and pattern passes the current value of the input,
returns the current output of the node and directly updates the state record self.

• The abstract function f , in the above formalization, is realized by the function ident_derivatives
self pattern that computes the current values of derivatives from the current state and stores
them in the internal state self.

• The abstract function g, in the above formalization, is realized by the function ident_crossings
self pattern that computes the current values of zero-crossing expressions and stores them
in the internal state self.

• A reset function ident_reset is also introduced. Calling ident_reset self resets the state self
to its initial value.

• Finally, there is also an allocation function ident_alloc () which returns an initial state (of
type ident).
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Chapter 4

The language

The syntax of the language is presented in BNF-like notation. Terminal symbols are set in
typewriter font (like this). Non-terminal symbols are set in italic font (like that). Square
brackets [ ... ] denote optional components. Curly brackets { ... } denotes zero, one, or several
repetitions of the enclosed components.

4.1 Lexical conventions

We adopt the lexical conventions of OCaml1 for blanks, comments, identifiers, integer literals,
floating-point literals, character literals, string literals, and prefix and infix symbols.

Keywords

The following identifiers are reserved as keywords.

as automaton atomic inline continue disc do done until
unless emit present match period with end fun node
hybrid discrete init in and open val local unsafe
let rec where open fby next up der reset
pre type every true false or on last if
then else quo mod land lor lxor lsl lsr
asr

The following character sequences are also keywords.

-> > < = <> >= ) & ?
+ - * / ;; <= ( .

4.2 Values

4.2.1 Basic values

Zélus provides the basic values of OCaml—that is, integer numbers, floating-point numbers,
characters and character strings—and with the same conventions.

1http://caml.inria.fr/pub/docs/manual-ocaml/lex.html
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4.2.2 Tuples, records, sum types

Zélus provides the tuples of OCamlwith the same conventions. It also provides records and
sum types with constructors of arity 0.

Functions

Functions map values to other values. They are separated into three main categories: pure or
combinatorial functions, discrete-time stateful functions, and continuous-time stateful func-
tions.

4.3 Global names

The naming conventions in Zélus are inherited from OCamlsubject to the restrictions detailed
in this section.

Names in Zélus fall into one of three syntactic classes:

• value-name for value names,

• typeconstr-name for type constructors, and

• module-name for module names.

4.3.1 Naming values

value-name ::= lowercase-ident
| ( operator-name )

operator-name ::= prefix-symbol | infix-symbol | * | = | or | & | ||
constructor-name ::= capitalized-ident

| ()
typeconstr-name ::= lowercase-ident
module-name ::= capitalized-ident

The syntactic class of lowercase-ident is the set of identifiers starting with a lowercase
letter whereas capitalized-ident is the set of of identifiers starting with a capital letter.

4.3.2 Referring to named values

value-path ::= value-name
| module-name . value-name

constructor ::= constructor-name
| module-name . capitalized-ident

typeconstr ::= typeconstr-name
| module-name . typeconstr

A value can be referred to either by its name or by its name qualified with a module name.



4.4 Types

type ::= ’ ident
| ( type )
| type {* type}
| type typeconstr
| ( type {, type }) typeconstr
| typeconstr

ftype ::= type -> type

4.5 Constants

immediate ::= integer-literal
| float-literal
| char-literal
| string-literal
| boolean-literal

Constants are formed of literals from the base types (integers, floating-point numbers, char-
acters, character strings, and booleans).

4.6 Patterns

Patterns allow binding identifiers to the components of data structures.

pattern ::= ident
| ( pattern )
| pattern as ident
| _
| pattern , pattern { , pattern }
| ()
| immediate
| constructor
| { label = pattern { ; label = pattern } }

4.7 Signal Patterns

Signal patterns allows for testing the presence of signals and for binding their values with pat-
terns. A boolean expressions is also considered a signal pattern (in non-continuous contexts).

signal-pattern ::= simple-expr
| simple-expression pattern
| signal-pattern on simple-expr
| signal-pattern & signal-pattern
| signal-pattern || signal-pattern



4.8 Expressions

simple-expr ::= value-path
| constructor
| immediate
| ( expr )
| { label = expr { ; label = expr } }
| simple-expr . label

pattern-list ::= pattern { pattern }

expr ::= simple-expr
| value-path simple-expr
| let [ rec ] definition { and definition } in expr
| if expr then expr else expr
| prefix-op expr
| expr infix-op expr
| up expr
| not expr
| expr fby expr
| pre expr
| expr -> expr
| last ident
| match expr with match-handlers [ end ]
| reset expr every expr
| present present-handlers [ end ]

infix-op ::= infix-symbol | * | = | or | || | &

match-handlers ::= [ | ] pattern -> expr { | pattern -> expr }

present-handlers ::= [ | ] signal-pattern -> expr { | signal-pattern -> expr }

The precedence and associativity rules of OCamlare adopted. The rules for Zélus-specific
primitives are, in order from highest to lowest precedence:

last right
pre -
function application -
fby left
... let,... -
-> right

4.8.1 Simple expressions

Constants

A constant expression, like 1 or false, denotes an infinite stream of that constant.



Variables

A variable evaluates to the value bound to that variable in the current evaluation environment.

Parenthesized expressions

The expression ( expr ) has the same value as expr.

Local definitions

The let and let rec constructs bind variables locally. The expression

let definition1 and ... and definitionn in expr

defines values to be visible in expr. In a let definition, variables names appearing on the right
of an equality are bound to their definition in the current environment. This environment
does not contains names from the let definition itself.

Recursive definitions of variables are introduced by let rec:

let rec definition1 and ... and definitionn in expr

In a recursive definition the current environment also contains names defined within the
let construction itself.

4.8.2 Operators

The operators written infix-op in the grammar are applied by placing them between two
expressions. The operators written prefix-op in the grammar are applied by placing them in
front of an expression.

The basic operators provided by OCaml (from the Pervasives module) are imported.
Scalar values imported from the host language become stream operators that are applied
pointwise.

Unit Delays

The expression pre expr denotes the delayed stream. The nth value of the result is the n−1th
value of expr. The value at the first instant is undefined.

The binary operator fby is the initialized delay operator. The first value of expr1 fby
expr2 is the first value of expr1. The nth value is the n− 1th value of expr2.

These two delay operators may only be activated on a discrete clock. In Zélus (version 1.2)
this is ensured by imposing that they appear only in contexts of kind k = D.

Initialization Operation

The expression expr1 -> expr2 initializes a stream. The expri must be streams of the same
type. The first value of the result is the first value of expr1, after which the nth value of the
result is the nth value of expr2.

The initialization operator must be activated on a discrete clock.



Access to a Shared State Variable

The expression last ident denotes the previous computed value of the variable ident.
As opposed to the unit delays, pre and fby, the operator last only applies to variable

names and it can be activated on both discrete and continuous clocks. Nonetheless, when
last x appears in a continuous context, Zélus (version 1.2) imposes that x be a continuous
state variable; in other words, it must be defined directly by an equation of the form der x = e.

Point-wise conditional

The expression if expr1 then expr2 else expr3 is the pointwise conditional: expr1 must be a
boolean stream and expr2 and expr3 must be two streams of the same type. The type of the
result is the type of expr2.

Warning: this operator is strict, that is, at every step, both branches are evaluated regard-
less of the value of the condition. The result at instant n is the value of expr2 if the value of
expr1 is true and the value of expr3 otherwise.

Function application

The expression value-path simple-expr is the application of the function value-path to the
expression simple-expr.

4.8.3 Control Structures

The constructions reset, match/with, reset, and automaton are control-structures which
combine equations and thus belong to the syntactic class of definitions (see section 4.9).

A derived form belonging to the syntactic class of expressions is also provided. The derived
form is useful for textual programming whereas the original one is motivated by the graphical
representation of dataflow programs. The derived form is only syntactic sugar for the original
form.

Pattern Matching over Expressions

The expression match expr with pat1 -> expr1 | . . . | patn -> exprn end is a short-cut for the
expression:

let match expr with
| pat1 -> do o = expr1 done
. . .
| patn -> do o = exprn done
end in

o

provided that o is a fresh name.

Modular Reset over Expressions

The expression reset expr1 every expr2 is a short-cut for let reset o = expr1 every expr2
in o, provided that o is a fresh name.



Automata

The expression automaton state1 -> expr1 trans1 | . . . | staten -> exprn transn end is a short-
cut for the expression:

let automaton
| state1 -> do o = expr1 trans1
. . .
| staten -> do o = exprn transn
end in

o

provided that o is a fresh name.

Testing Presence

The expression present spat1 -> expr1 | . . . | spatn -> exprn end is a short-cut for the expres-
sion:

let present
| spat1 -> do o = expr1 done
. . .
| spatn -> do o = exprn done
end in

o

provided that o is a fresh name.

4.9 Definitions
value-definition ::= let ident = expr

| [ let ] [ kind ] ident pattern = result-expr

function-kind ::= fun | node | hybrid

result-expr ::= expr [ where [ rec ] definition { and definition } ]

definition ::= pattern = expr
| init ident = expr
| emit ident = expr
| match expr with def-match-handlers [ end ]
| reset definition { and definition } every expr
| automaton def-automaton-handlers [ end ]
| present def-present-handlers [ else definition ] [ end ]
| [ local-definitions ] do definition-list done

definition-list ::= [ definition { and definition } ]

local-definitions ::= { let [ rec ] definition { and definition } in } { local ident in }



Global Value Definition

A global definition ident = expr defines the value of the global identifier ident to be equal to the
value of expr in the current global environment. The expression expr must be combinatorial.

Global Function Definition

A global function definition is of the form:

[ let ] [ kind ] ident pattern = result-expr

with

function-kind ::= fun | node | hybrid

where

• fun is the kind of combinatorial functions—typically a function imported from the host
language and applied pointwise. Its body result-expr must only contain combinatorial
operations. In particular, it may not invoke stateful functions like unit delays or inte-
grators.

• node is the kind of (possibly) stateful discrete-time functions—typically a synchronous
function that must be activated on a discrete-time scale. Its body result-expr must only
contain combinatorial and discrete-time stateful operations. In particular, it may not
invoke continuous-time operators like integrators or zero-crossing detection.

• hybrid is the kind of (possibly) stateful continuous-time functions—typically a function
that contains ODEs and/or zero-crossing detection and must be activated continuously.
It may contain all kinds of operator provided that discrete-time operations are activated
on discrete events.

Alternative Syntax for Local Definitions

The language provides an alternate form of local definitions for returning the results of func-
tions. The expression:

expr where [ rec ] definition1 and ... and definitionn

has the meaning of:

let [ rec ] definition1 and ... and definitionn in expr

Equation

The equation pattern = expr defines the current value of pattern to be equal to the current
value of expr.

Initialization of a State Variable

A definition init ident = expr initializes the value of last ident with the value of expr.



Signal Emission

An equation emit ident = expr defines the signal ident to be equal to the value of expr. At
every instant, a signal can be absent or present. When present, it carries a value.

Pattern Matching

def-match-handlers ::= [ | ] def-match-handler { | def-match-handler }

def-match-handler ::= pattern -> definition

The construct match expr with pattern1 -> action1 | ... | patternn -> actionn end is used
to combine n complementary sub-streams. Each of these streams is on the clock defined by
the instants where the value of e has the form patterni .

Each definition can define local and shared variables. Shared variables are variables that
may be defined and used across several branches and which are not bound by a local construct.

Reinitialization

The construct reset definition1 and ... and definitionn every expr allows for resetting the
computation defined by a set of definitions. All the defined values and expression expr must be
on the same clock. This construction acts as a regular multi-definition except that the streams
and automata defined in definition1,..., definitionn restart with their initial values every time
the current value of expr is true. In particular, automata appearing in definition1,..., definitionn
restart in their initial states.

Hierarchical Automata

def-automaton-handlers ::= [ | ] def-automaton-handler { | def-automaton-handler }

def-automaton-handler ::= constructor [ pattern ] -> automaton-definition

automaton-definition ::= local-definitions do definition-list transitions

transitions ::= done
| then state-expression
| continue state-expression
| unless transition { else transition }
| until transition { else transition }

transition | signal-pattern then [ local-definitions do definition-list ] in state
| signal-pattern continue [ local-definitions do definition-list ] in state

state-expression ::= constructor
| constructor ( expr )

The construction automaton def-automaton-handler | ... | def-automaton-handler end
defines an automaton. Each branch of the automaton has either the form:



constructor -> automaton-definition

or the form

constructor pattern -> automaton-definition

where constructor denotes the name of the state. This state may be parameterized by a
pattern. The first branch defines the initial state and this state cannot be parameterized
unless an initialization clause is given.

The action associated to a state has the form:

local-definitions do definition-list transitions

It comprises a (possibly empty) sequence of local definitions to the state, a definition list of
shared variables, and a (possibly empty) list of transitions to be tested sequentially. Transi-
tions may have several forms. Writing:

until transition { else transition }

defines a weak transition which is executed within the current reaction but at the end of it, that
is, after definitions from the current state have been executed. Transitions are all evaluated in
the same instant but sequentially: the first transition to succeed determines the target state
at the next reaction. Writing:

unless transition { else transition }

defines a strong transition which is executed before the reaction starts, that is, before definitions
from the current state have been executed. Transitions are all evaluated in the same instant
but sequentially: the first transition to succeed determines the current active state.

A transition may reset or not the history of the state being entered. Writing:

signal-pattern then [ local-definitions do definition-list ] in state

indicates that the target state is entered by reset, that is, all streams and automata in the
target state restart with their initial values. Writing:

signal-pattern continue [ local-definitions do definition-list ] in state

has the same behavior except that the target state is entered by history, that is, no reset
occurs. For both kinds of transition (reset or history), the condition signal-pattern is tested.
When it is true, local-definitions do definition-list in state are executed in the same reaction.

The language provides two transition shorthands:

1. The transition then state is shorthand for until true then state

2. The transition continue state is shorthand for until true continue state.

Zélus (version 1.2) forbids the mixing of weak and strong conditions within a single au-
tomaton (not counting nested automata). This differs from Lucid Synchrone, for example,
which allows for arbitrary combinations within an automaton. We made this choice to sim-
plify code generation and allow for more efficient execution. But we may lift this restriction
in a future release.



Testing the Presence of a Signal

The present construct resembles the pattern-matching one. It has the form:

present def-present-handlers [ else definition ] end

where a handler has the form:

def-present-handlers ::= [ | ] def-present-handler { | def-present-handler }
def-present-handler ::= signal-pattern -> definition

At every instant, signal patterns are tested sequentially and the one which first succeeds
determines the action to execute. The optional handler:

else definition

defines a condition which always succeed and thus gives a default action.

4.10 Type definition

Abstract types can be defined. Their syntax is inherited from OCaml and recalled here.

type-definition ::= type typedef { and typedef }

typedef ::= [ type-params ] typeconstr-name
| sum-type-def
| record-type-def

sum-type-def ::= [ | ] one-sum-def { | one-sum-def }

one-sum-def ::= capitalized-ident

record-type-def ::= { label-type { ; label-type } }

label-type ::= ident : type

type-params ::= ’ ident
| ( ’ ident { , ’ ident } )

4.11 Module implementation

implementation ::= { impl-phrase [ ;; ] }

impl-phrase ::= value-definition
| type-definition
| open module-name

A module implementation comprises a sequence of implementation phrases. An implementa-
tion phrase either opens a module, declares a type, or defines a sequence of values.



• The instruction open modifies the list of opened modules by adding the module name
to the head of the list of opened modules.

• The type definition defines a type from the implementation phrases following the defi-
nition.

• The value definition defines global values.

4.12 Importing values

Scalar interfaces written in OCaml can be imported into Zélus. In the current implementation,
a restricted subset of OCaml interfaces is considered. The syntax is the following:

scalar-interface :: = { scalar-interface-phrase [ ;; ] }

scalar-interface-phrase ::= value-declaration
| type-definition

value-declaration ::= val ident : type

When a value is imported from OCaml, it is automatically lifted to the stream level:

• A scalar value with a basic or declared type becomes an infinite stream of that type.

• A scalar functional value becomes a stream functional value applied pointwise to its
argument.



Chapter 5

zeluc

The Zélus compiler is called zeluc. Given a list of options and a filename, it transforms Zélus
source code into OCaml source code.

zeluc [option] filename

where options are:

-v Set verbose mode
-version The version of the compiler
-I <dir> Add <dir> to the list of include directories
-i Print types
-ic Print causality types
-where Locate standard libray
-stdlib <dir> Directory for the standard library
-nopervasives Do not load the pervasives module
-typeonly Stop after typing
-s <node> Simulates the node <node> and generates a file <node>.ml

For hybrid programs, compile with:
bigarray.cma unix.cma -I +sundials sundials_cvode.cma zllib.cma

-sampling <p> Sets the sampling period to p (float <= 1.0)
-check <n> Check that the simulated node returns true for n steps
-gtk2 Use lablgtk2 interface.

Compile with: -I +lablgtk2 lablgtk.cma zllibgtk.cma
-dzero Turn on discrete zero-crossing detection
-nocausality (undocumented)
-noinit (undocumented)
-inline <n> Level of inlining
-help Display this list of options
--help Display this list of options

Three kinds of arguments are accepted:

1. Arguments ending in .zls are interpreted as Zélus source files. These files must contain
sequences of node declarations. The zeluc compiler turns .zls files into a compiled
interface f.zci and an OCaml file f.ml. The .ml file defines the corresponding transition
functions for the values defined in the input file.
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2. Arguments ending in .zli are interpreted as Zélus interface files. These files define type
signatures for values implemented elsewhere. The zeluc compiler turns .zli files into
a compiled interface f.zci.

3. Arguments ending in .mli are interpreted as OCaml interface files. The zeluc com-
piler turns .mli files into a compiled interface f.zci. The values defined in f.mli are
considered to be a scalars.

SEE ALSO

The distribution and manual are available at http://zelus.di.ens.fr.

FILES
/usr/local/bin/zeluc the compiler
/usr/local/lib/zeluc the standard library

http://zelus.di.ens.fr
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