Zélus: a Synchronous Language with ODEs

Release, version $1 .{ }^{\text {¹ }}$

Tutorial and Reference Manual

> http://zelus.di.ens.fr

Marc Pouzet
Albert Benveniste, Timothy Bourke and Benoit Caillaud
Inria Project Team PARKAS, École normale supérieure,
45 rue d'Ulm, 75230 Paris, France
September 2015

[^0]
Contents

I The Zélus Language 9
1 Synchronous Programming 11
1.1 The Core Synchronous Language 11
1.1.1 Point-wise Operations 11
1.1.2 Delays 12
1.1.3 Global Declarations 12
1.1.4 Combinatorial Functions 13
1.1.5 Stateful Functions 14
1.1.6 Local and Mutually Recursive Definitions 16
1.1.7 Shared Memory and Initialization 17
1.1.8 Causality Check 18
1.1.9 Initialization Check. 19
1.2 Data types and Pattern Matching 19
1.2.1 Type Definitions 19
1.2.2 Pattern Matching 20
1.2.3 Pre versus Last 21
1.2.4 Local Definitions 22
1.2.5 Implicit Completion of Shared Variables 23
1.3 Valued Signals 23
1.3.1 Signal Emission 24
1.3.2 Signal Presence and Values 24
1.4 Hierarchical State Machines 26
1.4.1 Strong Preemption 26
1.4.2 Weak Preemption. 27
1.4.3 Parameterized States 28
1.4.4 Modular Resets 29
1.4.5 Local State Definitions 30
1.4.6 States and Shared Memory 32
1.4.7 The Initial State 33
1.4.8 Resuming a State 35
1.4.9 Actions on Transitions 36
1.4.10 Signals and State Machines 36
1.4.11 Pattern Matching over Signals 37
1.5 Alternative Syntax for Control Structures 38
1.6 Real Time versus Logical Time 39
2 Hybrid Systems Programming 41
2.1 Initial Value Problems 41
2.2 Mixing Discrete and Continuous Signals 42
2.2.1 Typing Constraints, 44
2.2.2 Zero-crossing Events 45
2.2.3 Periodic Timers 47
2.3 Hierarchical Automata and ODEs 47
3 Compilation and Simulation 51
3.1 Combinatorial Functions 51
3.2 Sequential Nodes 51
3.3 Hybrid Nodes and Interaction with a Solver 52
II Reference manual 55
4 The language 57
4.1 Lexical conventions 57
4.2 Values 57
4.2.1 Basic values 57
4.2.2 Tuples, records, sum types 58
4.3 Global names 58
4.3.1 Naming values 58
4.3.2 Referring to named values 58
4.4 Types 59
4.5 Constants 59
4.6 Patterns 59
4.7 Signal Patterns 59
4.8 Expressions 60
4.8.1 Simple expressions 60
4.8.2 Operators 61
4.8.3 Control Structures 62
4.9 Definitions 63
4.10 Type definition 67
4.11 Module implementation 67
4.12 Importing values 68
5 zeluc 69

Foreword

Zélus is a synchronous language in the style of Lustre [12] and Lucid Synchrone [8] but extended to model hybrid systems that mix discrete-time and continuous-time signals. An example is a system that mix a (discrete-time) model of real-time control software that executes in closed loop with a model of its physical environment described by a Ordinary Differential Equations. More intricate interactions between discrete- and continuous-time behaviors can be expressed, like, for instance, continuous-time PID controllers or hybrid automata with several running modes, each of them being defined by an ODEs (the so-called hybrid automata). Zélus provides basic synchronous language constructs-difference and data-flow equations, hierarchical automata, and stream function definitions - in the style of Lustre [12] and Lucid Synchrone [8]. Continuous-time dymamics are expressed by ODEs with events defined as zero-crossings.

The expressiveness of the language is deliberately constrained to statically ensure determinism and the generation of loop-free sequential code that runs in bounded time and space. Moreover, code is generated identically for both embedded targets and simulation. For source programs with ODEs, the generated sequential code is paired with a numerical solver to approximate the continuous-time dynamics. Zélus's main features are:

- It is a data-flow language in Single Static Assignment form: every name has only a single definition in the source code at any instant. A program is a collection of functions from signals to signals. A signal is a function from time to values. A set of signals is defined as the solution of a set of mutually recursive equations.
- The separation between discrete-time and continuous-time signals and systems is imposed at the level of function definitions:

1. A node is a function from discrete-time signals to discrete-time signals. A discrete-time signal is a sequence of values (a stream) as in other synchronous languages. A node is executed consecutively over the elements of a sequence of inputs to give a sequence of outputs. Nodes have no other notion of time than this succession of instants. In particular, there is no a priori 'distance' (time elapsed) between two instants. Outputs are produced atomically with triggering inputs, that is, instantaneously in the same discrete instant. They may depend on previous inputs; such nodes are termed stateful.
2. A hybrid node is a function from continuous-time signals to continuous-time signals. A continuous-time signal is a signal defined on a sequence of time intervals on the real line. A hybrid node is executed on this set of instants. Only hybrid nodes may contain ODEs and detect zero-crossing events.

- All discrete-time computations must be executed on a discrete clock. This is statically enforced by the type system, following the convention:

A clock is termed discrete if it has been so declared or if it results from the subsampling a discrete clock or a zero-crossing. Otherwise, it is termed continuous.

It is possible to reset a continuous variable defined by an ODE on a discrete clock. A zero-crossing occurs when a continuous-time signal crosses zero from a negative value to a positive one during integration. Conceptually, a timer is a particular case of a zero-crossing event, even if the actual implementation is more specific.

- The basic types like integers, floating-point numbers, booleans, and characters are lifted from the host language OCaml. Abstract types, product types, record types, and enumerated types can either be defined directly or imported from the host language. Functions may have polymorphic types as in $M L$. Structured values are accessed via pattern matching.
- Data-flow equations may be composed arbitrarily with hierarchical automata as in Lucid Synchron ${ }^{2}$ and SCADE 6$]^{3}$ The compiler ensures determinacy and the absence of infinite loops. Hierarchical automata are internally rewritten into data-flow equations.
- The compiler is written in OCaml as a series of source-to-source and traceable transformations that ultimately yield statically scheduled sequential OCamlcode. The results of intermediate steps can be displayed. Continuous components are simulated using an off-the-shelf numerical solvers (SUNDIALS CVODE 13) and, two built-in basic solvers (based on Matlab's ode23 and ode45 solvers [18]).

Zélus is a research prototype that exhibits a new way of defining a hybrid systems modeling language based on the principles and techniques of synchronous languages. Its expressive power for modeling physics is limited to ODEs, unlike Modelica ${ }^{5}$ which is based on DAEs. Research papers on the design, semantics and implementation of Zélus are available at http: //zelus.di.ens.fr.

Availability

The implementation is written in, and generates programs in OCaml, which must be installed.

$$
\begin{array}{l|l|}
\text { Zélus, version 1.2: } & \text { http://zelus.di.ens.fr } \\
\hline \text { Objective Caml, version 4.02.1 } & \text { http://www.ocaml.org } \\
\hline
\end{array}
$$

The language is experimental and evolves continuously. Please send comments or bug reports to Timothy.Bourke@inria.fr or Marc.Pouzet@ens.fr.

Copyright notice

This software includes the OCaml run-time system, which is copyrighted INRIA, 2015.

[^1]
Thanks

This software is a research prototype that takes considerable time to develop. If you find it useful, please consider citing our work [6] and sending us comments.

Part I

The Zélus Language

Chapter 1

Synchronous Programming

This chapter and the next one give a tutorial introduction to Zélus. This chapter focuses on the synchronous kernel of the language, which is reminiscent of Lustre and Lucid Synchrone. We shall sometimes compare Zélus with those two languages. The next chapter focuses on newer, hybrid aspects, like ODEs, zero-crossings, and their interaction with the synchronous features. The simulation engine is described in chapter 3 .

Familiarity with general programming languages is assumed. Some familiarity with (strict or lazy) ML languages and with existing synchronous data-flow languages like Lustre is helpful but not mandatory. Some references are given at the end of this document.

In this tutorial, we suppose that programs are written in a file called tutorial.zls.

1.1 The Core Synchronous Language

1.1.1 Point-wise Operations

Zélus is a first-order functional language. As in Lustre, every ground type or scalar value is imported from a host language (OCaml) and implicitly lifted to signals. A signal is a sequence or stream of values ordered in time: a value at an instant can only be produced after the values at all previous instants have been produced. This property models causality. In particular,

- int stands for the type of streams of integers,
- 1 stands for the constant stream of 1 s ,
- + stands for the pointwise addition operator over two input streams. It can be seen as an adder circuit just as \&\& can be seen as an "and" gate.

Program executions can be represented as timelines showing the sequences of values taken by streams. The example below shows five streams, one per line. The first line shows a stream c, which has the value T (true) at the first instant, F (false) at the second one, and T at the third. The '.. ' indicates that the stream has infinitely more values that are not shown. The next two lines define x and y . The fourth line defines a stream obtained by the pointwise addition of x and y . The expression in the fifth line takes the current value of either x or y according to the current value of c .

c	true	false	true	\cdots
x	x_{0}	x_{1}	x_{2}	\cdots
y	y_{0}	y_{1}	y_{2}	\cdots
$\mathrm{x}+\mathrm{y}$	$x_{0}+y_{0}$	$x_{1}+y_{1}$	$x_{2}+y_{2}$	\cdots
if c then x else y	x_{0}	y_{1}	x_{2}	\cdots

1.1.2 Delays

The delay operator is denoted fby . The expression x fby y , which is read as " x followed by y " takes the first value of x at the first instant and the previous value of y at all instants thereafter. In other words, it delays y by one instant, and is initialized by x. This operator originated in the language Lucid [1].

x	x_{0}	x_{1}	x_{2}	\cdots
y	y_{0}	y_{1}	y_{2}	\cdots
x fby y	x_{0}	y_{0}	y_{1}	\cdots

As it is often useful to separate a delay from its initialization, there is an operator pre x that delays its argument x and has an unspecified value (denoted here by nil) at the first instant. The complementary initialization operator $\mathrm{x} \rightarrow \mathrm{y}$ takes the first value of x at the first instant, and the current value of y thereafter. The expression x-> (pre y) is equivalent to x fby y.

x	x_{0}	x_{1}	x_{2}	\cdots
y	y_{0}	y_{1}	y_{2}	\cdots
pre x	nil	x_{0}	x_{1}	\cdots
$\mathrm{x}->\mathrm{y}$	x_{0}	y_{1}	y_{2}	\cdots

The compiler performs an initialization check to ensure that the behavior of a program never depends on the value nil. See section 1.1.9 for details.

Note: A common error is to try to use the initialization operator to define the first two values of a stream. This does not work, since x-> y $->z=x$-> z. One should instead write either x fby y fby z or $\mathrm{x}->$ pre ($\mathrm{y}-\mathrm{p}$ pre z). For example, the stream which starts with a value 1 , followed by a 2 , and then 3 forever is written 1 fby 2 fby 3 or 1 -> pre(2 -> pre(3)) or 1 -> pre(2 -> 3).

1.1.3 Global Declarations

A program is a sequence of declarations of global values. The keyword let defines non recursive global values which may be either constants or functions. For example:

```
let dt = 0.001
let g = 9.81
```

These declarations define two constant streams dt and g. Given the option -i, the compiler displays the types inferred for each declaration:

```
aneto.local: zeluc.byte -i tutorial.zls
val dt : float
val g : float
```

Only constant values can be defined globally. The declaration

```
let first = true -> false
```

is rejected with the message:

```
aneto.local: zeluc.byte -i tutorial.zls
File "tutorial.zls", line 1, characters 12-25:
>let first = true -> false
> ~nnnnnn^n^n-n
Type error: this is a discrete expression and is expected to be stateless discrete.
```

The right-hand side of a global let declaration may not contain delay operations. Definitions containing delays require the introduction of state. They may only be made within the node definition described in section 1.1.5

1.1.4 Combinatorial Functions

Functions whose output at an instant depends only on inputs at the same instant are termed combinatorial. They are stateless and may thus be used in both discrete and continuous time. Any expression without delays, initialization operators, or automata is necessarily combinatorial.

As for any globally defined value, a combinatorial function is defined using the let keyword. Consider, for example, a function computing the instantaneous average of two inputs:

```
let average (x,y) = (x + y) / 2
val average : int * int -> int
```

The type signature inferred by the compiler, int * int -A-> int, indicates that it takes two integer streams and returns an integer stream. The arrow -A-> tagged with an A indicates that this function is combinatorial. The A stands for "any"-the function average can be used anywhere in the code. We will describe other possibilities soon.

Function definitions may contain local declarations, introduced using either where or let notations. For example, the average function can be written in two (equivalent) ways:

```
let average (x,y) = o where o = (x + y) / 2
```

and

```
let average (x,y) = let o = ( }\textrm{x}+\textrm{y}\mathrm{ ) / 2 in o
```

The full adder is a classic example of a combinatorial program. It takes three input bits, a, b, and a carry bit c , and returns outputs for the sum s and carry-out co.

```
let xor (a, b) = (a & not(b)) or (not a & b)
let full_add (a, b, c) = (s, co) where
    s = xor (xor (a, b), c)
    and co = (a & b) or (b & c) or (a & c)
```


Figure 1.1: A half-adder and a full-adder

```
val xor : bool * bool -> bool
val full_add : bool * bool * bool -> bool * bool
```

Alternatively, a full adder can be described more efficiently as a composition of two half adders. A graphical depiction is given in figure 1.1. The corresponding program text is:

```
let half_add(a,b) = (s, co) where
        s = xor (a, b)
    and co = a & b
val half_add : bool * bool -> bool * bool
let full_add2(a, b, c) = (s, co) where
    rec (s1, c1) = half_add(a, b)
    and (s, c2) = half_add(c, s1)
    and co = c1 or c2
val full_add2 : bool * bool * bool -> bool * bool
```

The rec keyword specifies that the block of equations following the where is defined by mutual recursion. Without it, the s1 in the equation for s and $c 2$ would have to exist in the list of inputs or the global environment, and similarly for c 1 and c 2 in the equation for co.

Alternative notation: For combinatorial function definitions, the keyword let can be replaced by fun.

```
fun half_add (a,b) = (s, co) where
    rec s = xor (a, b)
    and co = a & b
```


1.1.5 Stateful Functions

A function is stateful or sequential if its output at an instant n depends on the inputs at previous instants $k(k \leq n)$, that is, on the history of inputs. Such functions may produce a varying output signal even when their inputs are constant.

Stateful functions must be declared with the node keyword. For example, this function computes the sequence of integers starting at an initial value given by the parameter m:

```
let node from m = nat where
    rec nat = m -> pre nat + 1
```

val from : int -D-> int
The type signature int -D-> int indicates that from is a sequential function that maps one integer stream to another. The D indicates that this function is stateful, it stands for "discrete". The function's output may depend on the past values of its input.

Applying this function to the constant stream 0 yields the execution:

m	0	0	0	0	0	0	\cdots
1	1	1	1	1	1	1	\cdots
pre nat	nil	0	1	2	3	4	\cdots
pre nat +1	nil	1	2	3	4	5	\cdots
m -> pre nat +1	0	1	2	3	4	5	\cdots
from m	0	1	2	3	4	5	\cdots

The fact that a function is combinatorial is verified during compilation. Thus, omitting the node keyword,

```
let from n = nat where rec nat = n -> pre nat + 1
```

leads to an error message:

```
aneto.local: zeluc.byte -i tutorial.zls
File "tutorial.zls", line 1, characters 33-49:
>let from n = nat where rec nat = n -> pre nat + 1
>
Type error: this is a discrete expression and is expected to be combinatorial.
```

While a node (arrow type -D->) cannot be called within a combinatorial function, it is possible to call a combinatorial function (arrow type -A->) within in a node. For example, the addition operator in the from function has the type signature int $*$ int -A-> int.

We now present a few more examples of stateful functions.
The edge front detector is defined as a global function from boolean streams to boolean streams:

```
let node edge c = c & not (false fby c)
val edge : bool -D-> bool
```

c	false	false	true	true	false	true	\cdots
false	\cdots						
false fby c	false	false	false	true	true	false	\cdots
not (false fby c)	true	true	true	false	false	true	\cdots
edge c	false	false	true	false	false	true	\cdots

A forward Euler integrator can be defined by:

```
let dt = 0.01
let node integr (x0, x') = x where
    rec x = x0 -> pre (x +. x' *. dt)
```

```
val dt : float
val integr : float * float -D-> float
```

These declarations give a global function integr that returns a stream x defined recursively so that, for all $n \in \mathbb{N}, x(n)=x 0+\sum_{i=0}^{n-1} x^{\prime}(i) \cdot d t$. The operators ' + .' and '*.' are, respectively, addition and multiplication over floating-point numbers. Stateful functions are composed just like any other functions, as, for example, in:

```
let node double_integr (x0, x0', x'') = x where
    rec x = integr (x0, x')
    and x' = integr (x0', x'')
```

Alternative notation: The keyword let can be omitted, for example,

```
node integr (x0, x') = x where
    rec x = x0 -> pre (x +. x' *. dt)
```


1.1.6 Local and Mutually Recursive Definitions

Variables may be defined locally with let/in or let rec/in whether the defining expression is stateful or not. The following program computes the Euclidean distance between two points:

```
let distance ((x0,y0), (x1,y1)) =
    let d0 = x1 -. x0 in
    let d1 = y1 -. x1 in
    sqrt (d0 *. d0 +. d1 *. d1)
```

Since d0 and d1 denote infinite streams, the computations of $\mathrm{x} 1-. \mathrm{x} 0$ and $\mathrm{y} 1-. \mathrm{x} 1$ occur in parallel, at least conceptually. In Zélus, however, the consecutive nesting of let/ins introduces a sequential ordering on the computations at an instant. In this example, this means that the current value of do is always computed before the current value of d1. Being able to impose such an ordering is useful when functions with side-effects are imported from the host language. Write simply let rec $\mathrm{d} 0=\ldots$ and $\mathrm{d} 1=\ldots$ if no particular ordering is needed.

Streams may be defined through sets of mutually recursive equations. The function that computes the minimum and maximum of an input stream x can be written in at least three equivalent ways. As two mutually recursive equations after a where:

```
let node min_max x = (min, max) where
    rec min = x -> if x < pre min then x else pre min
    and max = x -> if x > pre max then x else pre max
```

as a stream of tuples defined by two local, mutually recursive equations:

```
let node min_max x =
    let rec min = x -> if x < pre min then x else pre min
        and max = x -> if x > pre max then x else pre max in
    (min, max)
```

or as a stream of tuples defined by a single recursive equation:

```
let node min_max x = (min, max) where
    rec (min, max) = (x, x) -> if x < pre min then (x, pre max)
    else if x > pre max then (pre min, x)
    else (pre min, pre max)
```

Discrete approximations to the sine and cosine functions can be defined by:

```
let node sin_cos theta = (sin, cos) where
    rec sin = integr(0.0, theta *. cos)
    and cos = integr(1.0, -. theta *.sin)
```


1.1.7 Shared Memory and Initialization

In addition to the delay operator pre, Zélus provides another construction for referring to the previous value of a stream: last o, where o is a variable defined by an equation. For example:

```
let node counter i = o where
    rec init o = i
    and o = last o + 1
```

The equation init $0=i$ defines the initial value of the memory last 0 . This memory is initialized with the first value of i and thereafter contains the previous value of o. The above program is thus equivalent to the following one 1

```
let node counter i = o where
    rec last_o = i -> pre o
    and o = last_o + 1
```

The reason for introducing memories will become clear when control structures are introduced in section 1.2.2. Syntactically, last is not an operator: last o denotes a shared memory and the argument of last, here o, must be a variable name. Thus this program is rejected:

```
let node f () = o where
    rec o = 0 -> last (o + 1)
File "tutorial.zls", line 2, characters 21-22:
> rec o = 0 -> last (o + 1)
>
Syntax error.
```

Rather than define the current value of a signal in terms of its previous one, the next value can also be defined in terms of the current one. The same counter program can be written:

```
let node counter i = o where
    rec init o = i
    and next o = 0 + 1
```

or equivalently:

```
let node counter i = o where
    rec next o = o + 1 init i
```

[^2]In both definitions, o is initialized with the first value of i and then the value of o at instant $n+1$ is the value of $\circ+1$ at instant n (for all $n \in \mathbb{N}$).

Neither the form defining the current value from the previous one, nor the form defining the next value from the current one is intrinsically superior; it depends on the situation. Either form can be transformed into the other. We will see in chapter 2 that restrictions apply to both the next and last constructions when combining discrete- and continuous-time dynamics.
Remark: The compiler rewrites last, ->, fby, pre, init and next into a minimal subset.

1.1.8 Causality Check

Instantaneous cycles between recursively defined values-causality loops-are forbidden so that the compiler can produce statically-scheduled sequential code. For example, the program:

```
let node from m = nat where
    rec nat = m -> nat + 1
```

is rejected with the message:

```
File "tutorial.zls", line 2, characters 12-24:
> rec nat = m -> nat + 1
```



```
Causality error: This expression has causality type
'a, whereas it should be less than 'b
Here is an example of a cycle:
nat at 'c < nat at 'c
```

This program cannot be computed since nat depends instantaneously on itself. The compiler statically rejects function definitions that cannot be scheduled sequentially, that is, when the value of a stream at an instant n may be required in the calculation of that very value at the same instant, whether directly or through a sequence of intermediate calculations. In practice, we impose that all such stream interdependencies be broken by a delay (pre or fby). The purpose of causality analysis to to reject all other loops.

Note that delays can be hidden internally in the body of a function as is the case, for instance, in the languages Lustre and Signal. For example, consider the initial value problem:

$$
\begin{aligned}
\dot{t} & =g_{0}-g_{1} \cdot t \\
t(0) & =t_{0}
\end{aligned}
$$

We can approximate this value by using the explicit Euler integrator defined previously and defining a signal t by a recursive equation.

```
(* [t0] is the initial temperature; [g0] and [g1] two constants *)
let node heater(t0, g0, g1) = t where
    rec t = integr(t0, g0 -. g1 *. t)
val heater : float * float * float -D-> float
```

This feedback loop is accepted because integr (t0, g0 -. g1 *. temp) does not depend instantaneously on its input.

It is also possible to force the compiler to consider a function as strict with the atomic keyword. For example, the following program is rejected by the causality analysis.

```
let atomic node f x = 0 -> pre (x + 1)
let node wrong () =
    let rec o = f o in o
File "tutorial.zls", line 3, characters 14-17:
> let rec o = f o in o
> man
Causality error: This expression has causality type
'a, whereas it should be less than 'b
Here is an example of a cycle:
o at 'c < o at 'c
```

Even though the output of f does not depend instantaneously on its input x, the keyword atomic adds instantaneous dependencies between the output and all inputs. For atomic functions, the compiler produces a single step function ${ }^{2}$

1.1.9 Initialization Check

The compiler checks that every delay operator is initialized. For example,

```
let node from m = nat where
    rec nat = pre nat + 1
File "tutorial.zls", line 2, characters 6-9:
rec nat = pre nat + 1
> ~~^
Initialization error: this expression has type 1
which should be less than
0.
```

The analysis [10] is a one-bit analysis where expressions are considered to be either always defined or always defined except at the very first instant. In practice, it rejects expressions like pre (pre e), that is, uninitialized expressions cannot be passed as arguments to delays; they must first be initialized using the -> operator.

1.2 Data types and Pattern Matching

1.2.1 Type Definitions

Product types, record types, and enumerated types are defined in a syntax close to that of OCaml. Constructors with arguments are not supported in the current release. They can nevertheless be defined together with the functions that manipulate them in an OCaml module which is then imported into Zélus; see section 4.12.

Records are defined as in Ocaml and accessed with the dot notation. For example, the following defines a type circle, representing a circle as a record containing a center, given by its coordinates, and a radius.

[^3]

Figure 1.2: Rotating colored wheel and sensor

```
type circle = { center: float * float; radius: float }
let center c = c.center
let radius c = c.radius
```


1.2.2 Pattern Matching

Pattern matching over streams uses a match/with construction like that of OCaml.
For example, consider a colored wheel rotating on an axis for which we want to compute the direction of rotation. As shown in figure 1.2, the wheel has three sections with colors, ordered clockwise, blue (Blue), green (Green), and red (Red). A sensor mounted on the frame detects the changing colors as the wheel turns.

We must calculate whether the wheel is moving clockwise (Clockwise), that is, the sensor reports the sequence Red, Green, Blue, Red..., anticlockwise (Anticlockwise), whether it is not moving (Immobile), or whether the direction cannot be determined (Undetermined). We program the controller by first introducing two sum types:

```
type color = Blue | Red | Green
type dir = Clockwise | Anticlockwise | Undetermined | Immobile
```

The function direction then compares three successive values of the input stream i.

```
let node direction i = d where
    rec pi = i fby i
    and ppi = i fby pi
    and match ppi, pi, i with
        | (Red, Red, Red) | (Blue, Blue, Blue) | (Green, Green, Green) ->
                do d = Immobile done
        | (_, Blue, Red) | (_, Green, Blue) | (_, Red, Green) ->
                do d = Clockwise done
            | (_, Red, Blue) | (_, Green, Red) | (_, Blue, Green) ->
                do d = Anticlockwise done
        | _ -> do d = Undetermined done
    end
val direction : color -D-> dir
```

Each handler in a pattern-matching construct contains a set of equations defining shared variables; here the variable d. At each instant, the match/with statement in the example selects the first pattern (from the top) that matches the actual value of the triple ppi, pi, i and executes the corresponding branch. Only one branch is executed in any single reaction.

Combining such control structures with delay operators can give rise to subtle behaviors. Consider, for instance, the following program with two modes: in the Up mode, the variable o increases by 1 at each reaction and, in the mode Down, it decreases by 1 .

```
type modes = Up | Down
let node two (m, i) = o where
    rec init o = i
    and match m with
        | Up -> do o = last o + 1 done
        | Down -> do o = last o - 1 done
        end
```

The equation init $\circ=i$ defines a shared memory last \circ which is initialized with the first value of i. The variable o is called a shared variable because its definition is spread over several equations: when m equals Up, o equals last $\circ+1$; when m equals Down, o equals last - - 1. Communication between the two modes occurs through the shared memory last o which contains the value that o had the last time that it was defined (that is, at the most recent previous instant of definition). An example execution diagram is given below.

i		0	0	0	0	0	0	0	\cdots
m		Up	Up	Up	Down	Up	Down	Down	\cdots
last $0+1$	1	2	3		3			\cdots	
last $0-1$				2		2	1	\cdots	
\circ		1	2	3	2	3	2	1	\cdots
last 0	0	1	2	3	2	3	2	\cdots	

An equivalent way to express the same behaviour is:

```
let node two (m, i) = o where
    rec last_o = i -> pre o
    and match m with
            | Up -> do o = last_o + 1 done
            | Down -> do o = last_o - 1 done
            end
```

This version makes it clear how last o stands for the previously defined value of 0 .
The next section explains why using pre in this example would have given quite different results.

1.2.3 Pre versus Last

While last o may seem like just an alternative to pre ofor referring to the previous value of a stream, there is a fundamental difference between the two based on their respective instants of observation.

- In Zélus, as in other block-diagram formalisms like Simulink and SCADE, pre e is a unit delay through a local memory - it denotes the value that its argument had the last time it was observed. If pre e is used in a block structure which is executed from time to time, for example, when some condition c is true, the argument e is only computed when c is true: pre e is the value of e the last time c was true.
- On the other hand, last o denotes the previous value of the variable o relative to the sequence of instants where the variable o (it must be a variable and not an expression) is defined. It is useful for communicating values between modes which is why it is called a shared memory.

We augment the previous example with extra equations to illustrate the difference between the two delay constructs. The two new streams c1 and c2 return respectively the number of instants in which each mode is active.

```
let node two (m, i) = (o, c1, c2) where
    rec init o = i
    and init c1 = 0
    and init c2 = 0
    and match m with
        | Up -> do o = last o + 1
        and c1 = 1 -> pre c1 + 1
        done
        | Down -> do o = last o - 1
                        and c2 = 1 -> pre c2 + 1
                        done
```

 end
 The equation $c 1=1 \rightarrow$ pre $c 1+1$ is only active in the Up mode, and the equation $c 2=1$ $->$ pre $c 2+1$ is only active in the Down mode. The execution diagram is given below.

i	0	0	0	0	0	0	0	\cdots
m	Up	Up	Up	Down	Up	Down	Down	\cdots
last o +1	1	2	3		3			\cdots
$1->$ pre c1 +1	1	2	3		4			\cdots
last o -1				2		2	1	\cdots
$1->$ pre c2 +1				1		2	3	\cdots
0	1	2	3	2	3	2	1	\cdots
last o	0	1	2	3	2	3	2	\cdots
c1	1	2	3	3	4	4	4	\cdots
c2	0	0	0	1	1	2	3	\cdots

Pattern matching composes complementary sub-streams. For instance, the match/with in the previous example has two branches, and each defines its own clock, one for the instants when $m=U p$ and the other for the instants when $m=$ Down.

1.2.4 Local Definitions

It is possible to define variables which are local to a branch. For example:

```
let node two (m, i) = o where
    match m with
    | Up -> let rec c = 0 -> pre c + 1 in
                    do o = c done
    | Down -> do o = 0 done
    end
```

or equivalently:

```
let node two (m, i) = o where
    match m with
        | Up -> local c in
            do c = 0 -> pre c + 1
            and o = c done
    | Down -> do o = 0 done
    end
```

Here, c is declared local to the first handler of the match/with statement. The compiler verifies that a definition for c is given. Several variables can be declared local by writing local c1,..., cn in

1.2.5 Implicit Completion of Shared Variables

The branches of a pattern-matching construct need not contain definitions for all shared variables. Branches without a definition for a shared variable o are implicitly completed with an equation $\circ=$ last 0 .

The compiler rejects programs where it is unable to ensure that last o has an initial value. The following program, for instance, is rejected.

```
let node two (m, i) = o where
    rec match m with
        | Up -> do o = last o + 1 done
        | Down -> do o = last o - 1 done
        end
File "tutorial.zls", line 3, characters 17-18:
> | Up -> do o = last o + 1 done
>
Initialization error: this expression has type 1
which should be less than
0.
```


1.3 Valued Signals

Zélus provides valued signals that are built and accessed, respectively, through the constructions emit and present. At every instant, a valued signal is a pair comprising (1) a boolean c indicating when the signal is present and (2) a value that is present when c is true $]^{3}$

[^4]
1.3.1 Signal Emission

Unlike shared variables, signal values are not necessarily defined at every instant, nor do they implicitly keep their previous value when not updated. Consider this program, for instance:

```
let node within (min, max, x) = o where
    rec c = (min <= x) & ( }\textrm{x}<==\operatorname{max}
    and present c -> do emit o = () done
val within : 'a * 'a * 'a -D-> unit signal
```

It computes a condition c based on the input x . The signal o is present with value () every time c is true. There is no need to give an initial value for o. When c is false, o is simply absent. Removing the emit gives a program that the compiler rejects:

```
let node within (min, max, x) = o where
    rec c = (min <= x) & (x <= max)
    and present c -> do o = () done
File "tutorial.zls", line 3, characters 6-33:
> and present c -> do o = () done
```



```
Type error: o is a value of type
unit, but is expected to be a signal
(maybe a default value or initialization is missing).
```

The output o is not declared as a shared variable (with init) nor is it defined as a signal (with emit).

1.3.2 Signal Presence and Values

The presence of a signal expression e can be tested by the boolean expression ?e. The following program, for example, counts the number of instants where x is emitted.

```
let node count x = cpt where
    rec cpt = if ?x then 1 -> pre cpt + 1 else 0 -> pre cpt
val count : 'a signal -D-> int
```

There is also a more general mechanism to test signal presence that treats multiple signals simultaneously and allows access to their values. It resembles the pattern-matching construct of ML and it only allows signal values to be accessed at instants of emission ${ }^{4}$

The program below has two input signals, x and y , and returns the sum of their values when both are emitted, the value of x when it alone is emitted, the value of y when it alone is emitted, and 0 otherwise.

```
let node sum (x, y) = o where
    present
    | \(x(v) \& y(w)->d o \quad o=v+w d o n e\)
```

[^5]```
 | x(v) -> do o = v done
 | y(w) -> do o = w done
 else do o = 0 done
 end
```

val sum : int signal * int signal -D-> int

A present statement comprises several signal patterns and handlers. The patterns are tested sequentially from top to bottom. The signal condition $x(v) \& y(w)$ matches when both $x$ and $y$ are present. The condition $x(v)$ means " $x$ is present and has some value v". When $x$ is present, the variable v is bound to its value in the corresponding handler.

In the signal pattern $\mathrm{x}(\mathrm{v})$ \& $\mathrm{y}(\mathrm{w})$, x and y are expressions that evaluate to signal values and $v$ and $w$ are patterns. Writing $x(42) \& y(w)$ means "detect the presence of signal $x$ with value 42 and the simultaneous presence of $y$ ".

The output of the preceding function is a regular stream since the test is exhaustive thanks to the else clause. Omitting this default case results in an error.

```
let node sum (x, y) = o where
 present
 | x(v) & y(w) -> do o = v + w done
 | x(v1) -> do o = v1 done
 | y(v2) -> do o = v2 done
 end
File "tutorial.zls", line 2-6, characters 2-108:
>..present
> | x(v) & y(w) -> do o = v + w done
> | x(v1) -> do o = v1 done
> | y(v2) -> do o = v2 done
> end
Type error: o is a value of type
int, but is expected to be a signal
(maybe a default value or initialization is missing).
```

This error is easily eliminated by giving a last value to o-for example, by adding the equation init $0=0$ outside the present statement. The default case is then implicitly completed with $\circ=$ last $\circ$. Another way is to state that $\circ$ is a signal and thus only partially defined.

```
let node \(\operatorname{sum}(x, y)=0\) where
 present
 | \(x(v) \& y(w)->\) do emit \(o=v+w\) done
 | x(v1) -> do emit \(0=\mathrm{v} 1\) done
 | y(v2) -> do emit \(o=v 2\) done
 end
val sum : int signal * int signal -D-> int signal
```

Signal patterns may also contain boolean expressions. The following program adds the values of the two signals $x$ and $y$ if they are emitted at the same time and if $z>=0$.

```
let node sum (x, y, z) = o where
 present
 x(v) & y(w) & (z >= 0) -> do o = v + w done
 else do o = 0 done
 end
```

Remark: Signals make it possible to mimic the default construction of the language Signal [4. Signal's default $\mathrm{x} y$ takes the value of x when x is present and the value of y when $x$ is absent and $y$ is present. The signal pattern $x(v) \mid y(v)$ tests the presence of " $x$ or $y$ ".

```
let node signal_default (x, y) = o where
 present
 x(v) | y(v) -> do emit o = v done
 end
```

This is only a simulation of Signal's behavior since all information about the instants where x and y are present - the so-called clock calculus of Signal 4-is hidden at run-time and not exploited by the compiler. In particular, and unlike in the clock calculus of Signal, the Zélus compiler cannot determine that o is emitted only when x or y are present.

Unlike Lustre, Lucid Synchrone and Signal, Zélus does not currently have a clock calculus.

### 1.4 Hierarchical State Machines

Zélus provides hierarchical state machines that can be composed in parallel with regular equations or other state machines as well as arbitrarily nested. State machines are essentially taken as is from Lucid Synchrone and SCADE 6 $5^{5}$ They are compiled to data-flow equations 9.

In this tutorial, we first consider basic state machines where transition guards are limited to boolean expressions. We then consider two important extensions. The first is the ability to define state machines with parameterized states section 1.4.3) and actions on transitions (section 1.4.9). The second is a more general form of transitions with signal matching and boolean expressions (section 1.4.11).

An automaton is a collection of states and transitions. Two kinds of transitions are provided: weak and strong. For each, it is possible to enter the next state by reset or by history. An important feature of state machines in Zélus is that only one set of equations is executed during any single reaction.

### 1.4.1 Strong Preemption

The following program contains a two state automaton with strong preemption, it returns false until $x$ becomes true and then it returns true indefinitely.

```
let node strong x = o where
 automaton
 | S1 -> do o = false unless x then S2
 | S2 -> do o = true done
 end
```

[^6]val strong : bool -D-> bool
Each of the two states defines a value for the shared variable o. The keyword unless indicates a strong transition: the automaton stays in the state S1 as long as x is false, and o is defined by the equation $o=$ false, but the instant that $x$ becomes true, $S 2$ becomes active immediately, and $\circ$ is defined by the equation $\circ=$ true. Thus, the following timeline holds:

| $x$ | false | false | true | false | false | true | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| strong $x$ | false | false | true | true | true | true | $\cdots$ |

The guards of strong transitions are tested before determining which state is active at an instant and executing its body.

### 1.4.2 Weak Preemption

The following program contains a two state automaton with weak preemption, it returns false at the instant that x becomes true and then it returns true indefinitely; it is like a Moore automaton.

```
let node expect x = o where
 automaton
 | S1 -> do o = false until x then S2
 | S2 -> do o = true done
 end
```

val expect : bool -D-> bool

This timeline of this program is shown below.

| $x$ | false | false | true | false | false | true | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| expect $x$ | false | false | false | true | true | true | $\cdots$ |

The guards of weak transitions are tested after executing the body of the current active state to determine the active state at the next instant.

We now consider a two state automaton that switches between two states whenever the input toggle is true.

```
let node weak_switch toggle = o where
 automaton
 | False -> do o = false until toggle then True
 | True -> do o = true until toggle then False
 end
```

For an example input stream, the timeline is:

| toggle | false | true | false | false | true | true | false | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\circ$ | false | false | true | true | true | false | true | $\cdots$ |

The form with strong transitions follows.


Figure 1.3: Automata with weak (at left) and strong (at right) transitions

```
let node strong_switch toggle = o where
 automaton
 | False -> do o = false unless toggle then True
 | True -> do o = true unless toggle then False
 end
```

Its behavior relative to the same input sequence differs.

| toggle | false | true | false | false | true | true | false | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\circ$ | false | true | true | true | false | true | true | $\cdots$ |

In fact, for any boolean stream toggle the following property holds:

```
weak_switch toggle = strong_switch (false -> pre toggle)
```

The graphical representations of these two automata are shown infigure 1.3. The circles on the transition arrows distinguish weak transitions from strong ones: they graphically separate the actions of one instant from another. Since a weak transition is executed in the same instants as its source state, the circle is placed to separate it from its destination state. Since a strong transition is executed in the same instants as its destination state, the circle is placed to separate it from its source state.
Remark: The current version of Zélus does not permit arbitrary combinations of weak and strong transitions within an automaton as in Lucid Synchrone and SCADE 6. After much experience with automata, we think that such arbitrary mixes give programs that are difficult to understand. Future versions of Zélus may, however, allow a constrained mix of weak and strong transitions.

### 1.4.3 Parameterized States

In the examples considered so far, each automaton had a finite set of states and transitions. It is also possible to define more general state machines with parameterized states, that is, states containing local values that are initialized on entry. Parameterized states are a natural way to pass information between states and to reduce the number of explicitly programmed states. Parameterized state machines lead to a style of programming that resembles the definition of mutually tail-recursive functions in ML. Yet they are not compiled into mutually recursive functions but into a single step function with a switch-like construct over the active state.

In the following function, the automaton waits in its initial state for the signal e. When $e$ is present, its value is bound to $v$ and the automaton transitions to the state Sustain(v), that is, to the state Sustain with parameter x set to v .

```
(* wait for e and then sustain its value indefinitely *)
let node await e = o where
 automaton
 | Await -> do unless e(v) then Sustain(v)
 | Sustain(x) -> do emit o = x done
 end
val await : 'a signal -D-> 'a signal
```

The formal parameter x of the Sustain state can be used without restriction in the body of the state, and the variable v could just as well have been an expression.

As another example, the program below uses parameterized states to count the occurrences of x . It simulates an infinite state machine with states Zero, Plus(1), Plus (2), etcetera.

```
let node count \(\mathrm{x}=0\) where \(\mathrm{rec} 0=0\)-> pre \(0+1\)
let node count_in_an_automaton \(x\) = o where
 automaton
 | Zero -> do o = 0 until \(x\) then Plus (1)
 | Plus(v) -> do o = v until \(x\) then Plus (v+1)
 end
val count : 'a -D-> int
val count_in_an_automaton : bool -D-> int
```


### 1.4.4 Modular Resets

Gérard Berry's ABRO example highlights the expressive power of parallel composition and preemption in Esterel. The specification is [5, §3.1]:

Emit an output 0 as soon as two inputs A and B have occurred. Reset this behavior each time the input R occurs.

We will implement this example in Zélus - replacing uppercase letters by lowercase ones ${ }^{6}$-but generalize it slightly by considering valued events.

As a first step, consider a function that implements the first part of the specification: it waits for occurrences of both a and b using the await node from section 1.4.3 and then emits the sum of their values.

```
let node abo (a, b) = o where
 present (await a) (v1) & (await b) (v2) -> do emit o = v1 + v2 done
val abo : int signal * int signal -D-> int signal
```

This first version is readily extended to the full specification by putting it inside an automaton state with a self-looping (weak) transition that resets it when $r$ is true.

[^7]

Figure 1.4: The ABRO automaton

```
let node abro (a, b, r) = o where
 automaton
 | S1 ->
 do
 present (await a) (v1) \& (await b) (v2) -> do emit o = v1 + v2 done
 unless \(r\) then \(S 1\)
 end
val abro : int signal * int signal * bool -D-> int signal
```

A graphical version is shown in figure 1.4. The transition on resets the computation within the state: all streams in abo a b, including those inside both await nodes, restart with their initial values.

Zélus also provides a specific reset/every primitive as a shortcut for such a one-state automaton. It combines a set of parallel equations (separated by ands). We could thus write:

```
let node strong_abro (a, b, r) = o where
 reset
 present (await a)(v1) & (await b)(v2) -> do emit o = v1 + v2 done
 every r
val strong_abro : int signal * int signal * bool -D-> int signal
```

Except that reset/every is strongly preemptive; the body is reset before being executed at the instant the condition is true. There is no "weak reset" since one need only add a unit delay for the same effect. The following program implements the ABRO specification.

```
let node abro (a, b, r) = o where
reset
 o = abo (a, b)
every true fby r
val abro : int signal * int signal * bool -D-> int signal
```


### 1.4.5 Local State Definitions

Names may be declared local to a state. Such names can only be used inside the body of the state and in the guards of outgoing weak transitions.

The following program sums the integer sequence v and emits false until the sum has reached some value max. Then, it emits true for n instants.

```
let node consume (max, n, v) = status where
 automaton
```

```
| S1 ->
 let rec c = v -> pre c + v in
 do status = false
 until (c = max) then S2
| S2 ->
 let rec c = 1 -> pre c + v in
 do status = true
 until (c = n) then S1
end
```

State S 1 defines a local variable c that is used to compute the weak condition $\mathrm{c}=\max$ without introducing any causality problems. Indeed, weak transitions only take effect in a subsequent reaction: they define the next state, not the current one. Moreover, there is no restriction on the kind of expressions appearing in conditions and they may, in particular, have some internal state. For example, the previous program can be rewritten as:

```
let node sum \(v=c p t\) where
 rec cpt \(=\) v -> pre cpt + v
let node consume (max, \(\mathrm{n}, \mathrm{v}\)) = status where
 automaton
 | S1 ->
 do status = false
 until (sum \(v=\max\)) then S 2
 | S2 ->
 do status = true
 until (sum \(1=n\)) then S 1
 end
```

The body of a state comprises (possibly empty) sequences of local declarations (with local/in), local definitions (with let/in), and definitions of shared variables (with do/until). As noted previously, weak conditions may depend on local names and shared names.

In weak preemptions, as in the example above, transition conditions are evaluated after the equations in the body have been evaluated. The untils in this example may not be replaced with unlesss because in strong preemptions the transition conditions are evaluated before the equations in the body and may not depend on them. Thus, writing

```
let node consume (max, n, v) = status where
 automaton
 | S1 ->
 let rec c = v -> pre c + v in
 do status = false
 unless (c = max) then S2
 | S2 ->
 let rec c = 1 -> pre c + 1 in
 do status = true
 unless (c = n) then S1
 end
```

causes the compiler to emit the message:

```
File "tutorial.zls", line 6, characters 14-15:
> unless (c = max) then S2
> ~
Type error: the global value identifier value c is unbound.
```

The variable c is not visible in the handler of the unless. The same problem occurs if c is declared as a local variable, as in the following program.

```
let node consume (max, n, v) = status where
 automaton
 | S1 ->
 local c in
 do c = v -> pre c + v and status = false
 unless (c = max) then S2
 | S2 ->
 local c in
 do c = v -> pre c + v and status = true
 unless (c = n) then S1
 end
File "tutorial.zls", line 6, characters 14-15:
> unless (c = max) then S2
> -
Type error: the global value identifier value c is unbound.
```


### 1.4.6 States and Shared Memory

In the previous examples, there is no communication between the values computed in each state. We now consider the following simple system, due to Maraninchi and Rémond [16], of two running modes.

```
let node two_states (i, min, max) = o where
 rec automaton
 | Up -> do o = last o + 1
 until (o = max) then Down
 | Down -> do o = last o - 1
 until (o = min) then Up
 end
 and init o = i
```

In the Up mode, the system continually increments some value by 1 and in the Down mode, it decrements the same value by the same amount. The transitions between these two modes are described by a two-state automaton whose behavior depends on the value computed in each mode. The system's execution diagram is

| i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\min$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | $\ldots$ |
| $\max$ | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | $\ldots$ |
| 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | -1 | 0 | 1 | 2 | $\ldots$ |
| last 0 | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | -1 | 0 | 1 | $\ldots$ |
| last $0+1$ | 1 | 2 | 3 | 4 |  |  |  |  |  | 0 | 1 | 2 | $\ldots$ |
| last $0-1$ |  |  |  | 3 | 2 | 1 | 0 | -1 |  |  |  | $\ldots$ |  |

As for match/with and present, an implicit completion mechanism applies so that variables like o need not be explicitly defined in all automaton states. When an equation is not given, the shared variable keeps its previous values. In other words, an equation $\circ=$ last $\circ$ is assumed.

### 1.4.7 The Initial State

The initial automaton state can be used to define the values of variables that are shared across the other states. Such variables are considered to have a last value that can be accessed through the last operator. And, thanks to $0=$ last $\circ$ completion, explicit definitions can be omitted in other states.

```
let node two_states (i, min, max) = o where
 rec automaton
 | Init ->
 do o = i until (i > 0) then Up
 | Up ->
 do o = last o + 1
 until (o = max) then Down
 | Down ->
 do o = last o - 1
 until (o = min) then Up
 end
\begin{tabular}{ll|llllllllllllllll}
\hline i & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \(\ldots\) \\
\hline \(\min\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & \(\ldots\) \\
\hline \(\max\) & 0 & 0 & 0 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & \(\ldots\) \\
\hline 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & -1 & 0 & 1 & 2 & \(\ldots\) \\
\hline last 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & -1 & 0 & 1 & \(\ldots\) \\
\hline last \(0+1\) & 0 & 0 & 0 & 1 & 2 & 3 & 4 & & & & & & 0 & 1 & 2 & \(\ldots\) \\
\hline last \(0-1\) & 0 & 0 & 0 & & & & 3 & 2 & 1 & 0 & -1 & & & & \(\ldots\) \\
\hline
\end{tabular}
```

As the initial state Init is only weakly preempted, o is necessarily initialized with the current value of i. Thus, last $\circ$ is well defined in the remaining states. Replacing weak preemption by strong preemption results in an error.

```
let node two_states (i, min, max) = o where
 rec automaton
 | Init ->
 do o = i unless (i > 0) then Up
 | Up ->
```

```
 do o = last o + 1
 unless (o = max) then Down
 | Down ->
 do o = last o - 1
 unless (o = min) then Up
 end
File "tutorial.zls", line 7, characters 18-19:
> unless (o = max) then Down
>
Causality error: This expression has causality type
'a, whereas it should be less than 'b
Here is an example of a cycle:
```

$\mathrm{a}<\mathrm{b}$; b < a

As explained insection 1.4.5, the guards of strong transitions may not depend on variables computed in the current state. They may depend, however, on a shared memory last o, as in:

```
and automaton
 | Init ->
 do o = i unless (i > 0) then Up
 | Up ->
 do o = last o + 1
 unless (last o = max) then Down
 | Down ->
 do o = last o - 1
 unless (last o = min) then Up
 end
```

giving the same execution diagram as before:

| i | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\min$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | $\ldots$ |
| $\max$ | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | $\ldots$ |
| o | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | -1 | 0 | 1 | 2 | $\ldots$ |
| last 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | -1 | 0 | 1 | $\ldots$ |
| last $\circ+1$ | 0 | 0 | 0 | 1 | 2 | 3 | 4 |  |  |  |  |  | 0 | 1 | 2 | $\ldots$ |
| last o - 1 | 0 | 0 | 0 |  |  |  | 3 | 2 | 1 | 0 | -1 |  |  |  | $\ldots$ |  |

An initial state may be parameterized if an explicit initialization clause is added to the automaton. For example, the following two state automaton starts in state Run(incr) with incr initialized to the first value of $i 0$.

```
let node two_states(i0, idle, r) = o where
 rec automaton
 | Run(incr) ->
 do o = 0 fby o + incr until idle() then Idle
 | Idle ->
 do until r(incr) then Run(incr)
 init Run(i0)
val two_states : int * unit signal * int signal -D-> int
```


### 1.4.8 Resuming a State

By default, the computations within an automaton state are reset when it is entered. So, for instance, the counters in the states of the example below are reset on every transition.

```
let node time_restarting c = (x, y) where
 rec automaton
 | Init ->
 do x = 0 and y = 0 then S1
 | S1 ->
 do x = 0 -> pre x + 1 until c then S2
 | S2 ->
 do y = 0 -> pre y + 1 until c then S1
 end
val time_restarting : bool -D-> int * int
```

Giving the execution trace (where we write $F$ for false and $T$ for true):

| c | $F$ | $F$ | $F$ | $F$ | $T$ | $F$ | $T$ | $F$ | $F$ | $F$ | $F$ | $T$ | $T$ | $F$ | $F$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | 0 | 0 | 1 | 2 | 3 | 3 | 3 | 0 | 1 | 2 | 3 | 4 | 4 | 0 | 1 | 2 |
| y | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |

Note that the transition from the initial state, do $\mathrm{x}=0$ and $\mathrm{y}=0$ then $S 1$, is shorthand for do $\mathrm{x}=0$ and $\mathrm{y}=0$ until true then S 1 .

It is also possible to enter a state without resetting its internal memory (as in the entry-by-history of StateCharts) using the continue transitions. The modified example,

```
let node time_sharing c = (x, y) where
 rec automaton
 | Init ->
 do }\textrm{x}=0\mathrm{ and y = 0 continue S1
 | S1 ->
 do x = 0 -> pre x + 1 until c continue S2
 | S2 ->
 do y = 0 -> pre y + 1 until c continue S1
 end
```

val time_sharing : bool -D-> int * int
has the execution trace:

| c | $F$ | $F$ | $F$ | $F$ | $T$ | $F$ | $T$ | $F$ | $F$ | $F$ | $F$ | $T$ | $T$ | $F$ | $F$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | 0 | 0 | 1 | 2 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | 10 | 11 |
| y | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |

This is a way of writing activation conditions. It is convenient, for instance, for programming a scheduler which alternates between different computations, each of them having its own state.

### 1.4.9 Actions on Transitions

It is possible to perform an action on a transition. As an example, consider programming a simple mouse controller with the following specification.

Return the event double whenever two clicks are received in less than four tops. Emit simple if only one click is received within the interval.

Here is one possible implementation:

```
let node counting e = cpt where
 rec cpt = if e then 1 -> pre cpt + 1 else 0 -> pre cpt
val counting : bool -D-> int
let node controller (click, top) = (simple, double) where rec
 automaton
 | Await ->
 do simple = false and double = false until click then One
 | One ->
 do until click then do simple = false and double = true in Await
 else (counting top = 4) then
 do simple = true and double = false in Await
 end
val controller : bool * bool -D-> bool * bool
```

This program waits for the first occurrence of click, then it enters the One state and starts to count the number of tops. This state is exited when a second click occurs or when the condition counting top $=4$ becomes true.

Note that the One state has two outgoing weak transitions (the second prefixed by else. As for the present construct, transition guards are evaluated in order from top to bottom. The first to be satisfied is triggered.

| click | $F$ | $T$ | $F$ | $T$ | $F$ | $T$ | $F$ | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| top | $T$ | $F$ | $T$ | $F$ | $T$ | $T$ | $F$ | $T$ | $T$ | $T$ | $F$ | $T$ | $T$ | $F$ |
| simple | $F$ | $T$ | $F$ | $F$ |
| double | $F$ | $F$ | $F$ | $T$ | $F$ |

Any set of equations can be placed between the do/in of a transition, exactly as between a do/until or do/unless.

### 1.4.10 Signals and State Machines

In the automata considered until now, the conditions on transitions have been boolean expressions. The language also provides a more general mechanism for testing signals and accessing their values on transitions.

Using signals, we can reprogram the mouse controller of the previous section as follows.

```
type event = Simple | Double
let node controller (click, top) = o where
 automaton
 | Await ->
 do until click then One
 | One ->
 do until click then do emit o = Double in Await
 else (counting top = 4) then do emit o = Simple in Await
 end
type event = | Double | Simple
val controller : bool * bool -D-> event signal
```

This time no variables are defined in state Await. Writing emit $0=x$ means that 0 is a signal and not a regular stream, there is thus no need to define it in every state of the automaton nor to declare a last value. The signal o is only emitted in state Emit. Otherwise, it is absent.

| click | $F$ | $T$ | $F$ | $T$ | $F$ | $T$ | $F$ | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| top | $T$ | $F$ | $T$ | $F$ | $T$ | $T$ | $F$ | $T$ | $T$ | $T$ | $F$ | $T$ | $T$ | $F$ |
| ○ | Double |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | Simple |  |  |  |  |  |  |  |

Combining signals with a sum type, as is done here, has some advantages over the use of boolean variables in the original program. By construction, only three values are possible for the output: o can only be Simple, Double or absent. In the previous version, a fourth case corresponding to the boolean value simple \& double is possible, even though it is meaningless.

### 1.4.11 Pattern Matching over Signals

The signal patterns introduced in section 1.3.2 for the present construct may also be used in transition conditions to combine signals and access their values.

Consider, for example, the system below that has two input signals inc and dec, and that outputs a stream of integers o.

```
let node switch (inc, dec) = o where
 rec automaton
 | Init ->
 do o = 0
 until inc(u) then Up(u)
 else dec(u) then Down(u)
 | Up(u) ->
 do o = last o + u
 until dec(v) then Down(v)
 | Down(v) ->
 do o = last O - v
 until inc(u) then Up(u)
 end
```

val switch : int signal * int signal -D-> int
The condition until inc(u) means: await the presence of the signal low with some value $u$, then transition to the parameterized state $U p(u)$.

A basic preemption condition has the form $e(p)$ where $e$ is an expression of type $t$ sig and $p$ is a pattern of type $t$. The condition binds the variables in the pattern $p$ from the value of the signal at the instant when $e$ is present. In the above example, for instance, the variable u is introduced and bound over the rest of the transition. A test for signal presence can be combined with a boolean condition. For example,

```
let node switch (inc, dec) = o where
 rec automaton
 | Init ->
 do o = 0
 until inc(u) then Up(u)
 else dec(u) then Down(u)
 | Up(u) ->
 let rec timeout = 0 -> pre timeout + 1 in
 do o = last o + u
 until dec(v) & (timeout > 42) then Down(v)
 | Down(v) ->
 let rec timeout = 0 -> pre timeout + 1 in
 do o = last o - v
 until inc(u) & (timeout > 42) then Up(u)
 end
val switch : int signal * int signal -D-> int
```

This system has the same behavior except that the presence of dec in the Up state is only taken into account when the timeout stream has passed the value 42 .

### 1.5 Alternative Syntax for Control Structures

Each of the three control structures (match/with, automaton, and present) combines equations. Each branch comprises a set of equations defining shared values. In this form, it is not necessary to explicitly define all shared variables in every branch since they implicitly keep their previous value or, for signals, become absent.

This syntactical convention mirrors the graphical representation of programs in synchronous dataflow tools (like SCADE). In such tools, control structures naturally combine (large) sets of equations and the implicit completion of absent definitions is essential.

The language also provides a derived form that allows control structures to be used in expressions. For example,

```
let node two x =
 match x with | true -> 1 | false -> 2
```

can be written as a shorthand for

```
let node two x =
 let match x with
 | true -> do o = 1 done
 | false -> do o = 2 done
 end in
 O
```

This notation is more conventional for OCaml programmers. A similar shorthand exists for the present and automaton constructs. One can write, for instance,

```
let node toggle x = y where
 rec y =
 automaton
 | S0 -> do 0 until x then S1
 | S1 -> do 1 until x then S0
```


### 1.6 Real Time versus Logical Time

We close the chapter on synchronous programming with an example real-time controller that tracks the passage of time using counters that then influence the running mode. This example highlights the difference between the idea of logical time considered thus far and that of real-time.

Consider a light that blinks according to the specification:
Repeat the following behavior indefinitely: Turn a light on for n seconds and then off for m seconds. Allow it to be restarted at any instant.

One way to start implementing this specification is to define a boolean signal called second that is true at every occurrence of a second, whatever that may mean, and false otherwise. We then define a node called after_n( $n, t$ ) that returns true when $n$ true values are counted on $t$. This is then instantiated twice in a node called blink_reset containing an automaton with two modes wrapped by a reset construct.

```
let node after_n(n, t) = (cpt >= n) where
 rec tick = if t then 1 else 0
 and ok = cpt >= n
 and cpt = tick -> if pre ok then n else pre cpt + tick
let node blink_reset (restart, n, m, second) = x where
 reset
 automaton
 | On -> do x = true until (after_n(n, second)) then Off
 | Off -> do x = false until (after_n(m, second)) then On
 every restart
```

The type signatures inferred by the compiler are:

```
val after_n : int * bool -D-> bool
val blink_reset : bool * int * int * bool -D-> bool
```

Does after_n(n, second) really give a delay of $n$ real-time seconds? No, for two reasons (see also [7]):

1. second is a Boolean stream. No hypothesis is made or ensured by the compiler about the actual real-time duration between two occurrences of true in the stream. It is up to the implementation to ensure that second correctly approximates a real second.
2. The counting of instants in the expression after_n ( $n, t$ ) is only performed when the expression is active, that is, it returns true when n occurrences of the value true have been observed. This can be less than the number of occurrences of the value true of n. E.g., instantiating blink_reset within a branch of an automaton or match that is activated from time to time.

In this chapter, time is logical meaning that we count number of occurrences. We shall see in the next chapter how to connect it with physical time.

## Chapter 2

## Hybrid Systems Programming

In this chapter we introduce the main novelty of Zélus with respect to standard synchronous languages: all of the previously introduced constructs, that is, stream equations and hierarchical automata, can be combined with Ordinary Differential Equations (ODEs). As before, we only present basic examples in this document. More advanced examples can be found on the examples web page ${ }^{1}$

### 2.1 Initial Value Problems

Consider the classic Initial Value Problem that models the temperature of a boiler. The evolution of the temperature $t$ is defined by an ODE and an initial condition:

$$
\begin{aligned}
\dot{t} & =g_{0}-g_{1} \cdot t \\
t(0) & =t_{0}
\end{aligned}
$$

where $g_{0}$ and $g_{1}$ are constant parameters and $t_{0}$ is the initial temperature. Instead of choosing an explicit integration scheme as in section 1.1.8, we can now just write the ODE directly:

```
let hybrid heater(t0, g0, g1) = t where
 rec der t = g0 -. g1 *. t init t0
val heater : float * float * float -C-> float
```

The der keyword defines $t$ by a (continuous) derivative and an initial value. Notice that the hybrid keyword is used here rather than node. It signifies the definition of a function between continuous-time signals. This is reflected in the type signature inferred by the compiler with its -C-> arrow. The C stands for "continuous" Hybrid functions need special treatment for simulation with a numeric. Discrete nodes, on the other hand, evolve in logical time, that is, as a sequence of instants, and may not contain any nested continuous-time computations.

As a second example of the new features, consider the following continuous definition of the sine and cosine signals whose stream approximation was given in section 1.1.6.

```
let hybrid sin_cos theta = (sin, cos) where
 rec der sin = theta *. cos init 0.0
 and der cos = -. theta *. sin init 1.0
```

[^8]val sin_cos : float -C-> float * float
Are these definitions really all that different from those in the previous chapter? Yes!
The dynamics of the boiler temperature and those of the sine and cosine signals are now defined by ODEs, and a numeric solver is used to approximate their continuous-time trajectories. The choice of the solver is independent of the model and made outside the language. Programs are defined at a higher level of abstraction, leaving the choice of an integration scheme to the numerical solver. In particular, signals are not necessarily integrated using a fixed-step explicit scheme like that coded manually in section 1.1.8. It is possible to program models that mix discrete-time computations with ODEs and to simulate them together using an external solver.

Remark: The compiler generates sequential code that allows ODEs to be approximated by a numerical solver. The current version of Zélus provides an interface to the Sundials CVODE 2 [13] solver and two classical variable step solvers (ode23 and ode45 [11]).

A Proportional Integral (PI) controller is a classic example of a continuous-time function. Below we present two implementations: a continuous version to be approximated by an external numeric solver, and a discrete version using forward Euler integration.

```
(* a continuous-time integrator *)
let hybrid integr(x0, x') = x where
 rec der x = x' init x0
(* a continuous-time PI controller *)
let hybrid pi(kp, ki, error) = command where
 rec command = kp *. error +. ki *. integr(0.0, error)
let ts = 0.05
(* a explicit Euler integration *)
let node disc_integr(y0, x') = y where
 rec y = y0 -> last y +. ts *. x'
(* a discrete-time PI controller *)
let node disc_pi(kp, ki, error) = cmd where
 rec cmd = kp *. error +. ki *. disc_integr(0.0, error)
val integr : float * float -C-> float
val pi : float * float * float -C-> float
val ts : float
val disc_integr : float * float -D-> float
val disc_pi : float * float * float -D-> float
```


### 2.2 Mixing Discrete and Continuous Signals

Care must be taken when mixing signals and systems defined in discrete logical time with those defined in continuous time, both to ensure that programs make sense and that they can

[^9]

Figure 2.1: Possible interpretations of the wrong1 program.
be simulated effectively. Consider, for instance, the following simple program.

```
let hybrid wrong1() = o where
 rec der \(\mathrm{x}=1.0\) init 0.0
 and \(o=0.0->\) pre \(0+\). \(x\)
```

The signal x is continuous and $o$ is discrete (due to the -> and pre operators). What can it mean to put them in parallel in this way? The meaning of x along is clear: $\forall t \in \mathbb{R}+, x(t)=t$. It is shown in the three diagrams of figure 2.1 as a blue line that increases from zero with a constant slope. Each of the diagrams shows a different interpretation for o:
(a) Since the discrete reactions can be numbered by the natural numbers and these numbers are a subset of the reals, we could decide to simply embed the discrete reactions at times $0.0,1.0,2.0$, etcetera. The value of o is then perfectly well defined (the red dots in the figure), but the mapping of reactions to continuous time is completely arbitrary.
(b) Since a numeric solver must inevitably approximate continuous signals over a sequence of discrete steps, we could decide to execute discrete equations at the sampling instants chosen by the solver. This mapping of reactions is less arbitrary since it corresponds to the underlying discrete solver process, but the meaning of a program now depends on low-level details of the numerical simulation. Changing the solver or its parameters, or adding another unrelated equation in parallel will likely change the value of $o$.
(c) A third possibility is to consider that the process corresponding to $\circ$ is iterated continually, that is, as time advances infinitesimally. Although the value of o rapidly diverges toward infinity, it is well defined. The real problem is that such programs cannot be effectively simulated using numeric techniques.

We do not consider any of these three alternatives as acceptable. Instead, the compiler rejects wrong1 as invalid:

```
File "tutorial.zls", line 3, characters 10-27:
> and o = 0.0 -> pre o +. x
```



```
Type error: this is a discrete expression and is expected to be continuous.
Similarly, a second program,
```

```
let hybrid wrong2() = o where
```

let hybrid wrong2() = o where
rec der x = o init 0.0
and o = 0.0 -> pre o +. 1.0

```
is also rejected as meaningless because o should be the discrete-time signal \(\forall n \in \mathbb{N}, o(n)=n\) which cannot be integrated to produce x .

\subsection*{2.2.1 Typing Constraints.}

The restrictions on mixing combinatorial, discrete-time, and continuous-time constructs are formalized as a typing system that statically accepts or rejects programs.

Every expression is associated to a kind \(k \in\{\mathrm{~A}, \mathrm{D}, \mathrm{C}\}\). During typing, the compiler ensures that the following rules are satisfied:
1. The body of a combinatorial function (see section 1.1.4) must be of kind A. The body of a stateful function (declared as a node; see section 1.1.5) must be of kind D. Finally, the body of a continuous-time function (declared with the hybrid keyword) must be of kind C.
2. When the parallel composition of two (sets of) equations " \(E_{1}\) and \(E_{2}\) " is expected to have kind \(k\), then \(E_{1}\) and \(E_{2}\) must both also be of the same kind \(k\). For instance, if \(E_{1}\) and \(E_{2}\) is expected to be combinatorial \((k=\mathrm{A})\) then \(E_{1}\) and \(E_{2}\) must also both be combinatorial; if \(E_{1}\) and \(E_{2}\) is discrete (\(k=\mathrm{D}\)) then both \(E_{1}\) and \(E_{2}\) must be discrete. Finally, if \(E_{1}\) and \(E_{2}\) is continuous (\(k=\mathrm{C}\)) then both \(E_{1}\) and \(E_{2}\) must be continuous.
3. Any combinatorial equation or expression can be treated as either a discrete or a continuous one. In other words, A is a subkind of both D and C.

Thus, all sub-expressions in the body of a combinatorial function must be of kind A. All sub-expressions in the body of a node must be of kind A or of kind D. All sub-expressions in the body of a hybrid node must be of kind A or of kind C.

In addition to these basic rules, a computation with kind D can be placed in parallel with an expression of kind C provided it is sampled on a discrete clock. We adopt the following convention:

A clock is termed discrete if it has been declared so or if it is the result of a zerocrossing or a sub-sampling of a discrete clock. Otherwise, it is termed continuous.
For example, the following function which composes an ODE and a discrete-time computation is correct. The value of x is added to that of o at every instant where tick is present. Between ticks, o is unchanged.
```

let hybrid correct(tick) = o where
rec der x = 1.0 init 0.0
and present tick -> do o = last o +. x done
and init o = 0.0

```


Figure 2.2: Interpretation of the (newly) correct program.
val correct : zero -C-> float
The input tick has type zero, the type of zero-crossing events which are explained in the next section. The interpretation of this program is sketched in figure 2.2. The instants of activation of tick are generated (elsewhere) by monitoring a continuous expression. The value of o (in red) is recalculated at these instants by sampling the value at \(x\) and adding it onto the previous value, it is otherwise unchanged (that is, piecewise constant).

A formal presentation of the typing rules described in this section is available [2].

\subsection*{2.2.2 Zero-crossing Events}

Zero-crossings are a standard mechanism used by numeric solvers to detect significant events. A solver recalculates the values of a set of zero-crossing expressions at each new approximation of the continuous state of a system. When one of the expressions changes sign between two successive approximations, the solver iterates to try to pinpoint the instant when the expression is equal to zero.

In Zélus, a zero-crossing expression is declared by the operator up(e). The language runtime detects when the value of the expression e changes from a negative value to a positive one during integration. The resulting events can be used to reset ODEs as illustrated in the following, classic example of a bouncing ball.

Consider a ball with initial position \(\left(x_{0}, y_{0}\right)\) and initial speed \(\left(x_{0}^{\prime}, y_{0}^{\prime}\right)\). Every time the ball hits the ground, it bounces but looses \(20 \%\) of its speed. An example trajectory is depicted in figure 2.3.

The source program is shown below. This version is slightly simplified compared to the version \({ }^{3}\) giving rise to figure 2.3 the steps are not modeled and we consider that the ground is at \(y=0\). We will reconsider this detail when we reprogram the example in section 2.3.
```

let g = 9.81
let loose = 0.8

```

\footnotetext{
\({ }^{3}\) http://zelus.di.ens.fr/examples.html\#ex-bouncingball
}

Figure 2.3: The Bouncing Ball
```

let hybrid bouncing(x0,y0,x'0,y'0) = (x,y) where
rec der x = x' init x0
and der x' = 0.0 init x'0
and der y = y' init y0
and der y' = -. g init y'0 reset up(-. y) -> -. loose *. last y'
val bouncing : float * float * float * float -C-> float * float

```

The ODE defining \(y^{\prime}\), is reset every time -.y crosses zero. At this precise instant, the initial value of \(y^{\prime}\) is -. loose *. last y'. Exactly as in chapter 1, last y' is the value of \(y^{\prime}\) at the previous instant. But the notion of previous instant for a continuous-time signal requires clarification. Mathematically, at the instant of a reset, we need to distinguish the value of y ' just before the reset and the new value that \(\mathrm{y}^{\prime}\) takes at the instant of the reset. As \(y^{\prime}\) is a continuous-time signal, last \(y^{\prime}\) is the left limit of \(y^{\prime}\). It corresponds to the value of \(y^{\prime}\) computed during the integration process just preceding the discrete reaction that resets \(y^{\prime}\).

Replacing last y' by y' leads to an error of causality. Indeed, the current value of y' would then depend instantaneously on itself. The compiler statically rejects such programs:
```

let hybrid bouncing $\left(x 0, y 0, x^{\prime} 0, y^{\prime} 0\right)=(x, y)$ where
rec der $x=x$, init $x 0$
and der $x^{\prime}=0.0$ init $x^{\prime} 0$
and der $y=y$, init $y 0$
and der $y^{\prime}=-. g$ init $y^{\prime} 0$ reset $u p(-. y)$-> -. loose *. y'
File "tutorial.zls", line 5, characters 5-60:
$>$ and der $y^{\prime}=-. g$ init $y^{\prime} 0$ reset $u p(-. y)->-$. loose *. y'

```

```

Causality error: This expression has causality type
'a, whereas it should be less than 'b
Here is an example of a cycle:
$y$ ' at 'b < y' at 'b

```


Figure 2.4: Trace of the sawtooth program.

The sawtooth signal shown in figure 2.4 is another example of an ODE with reset. The signal \(x: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}\)is defined such that \(\frac{d x}{d t}(t)=1\) and \(x(t)=0\) if \(t \in \mathbb{N}\), or as a hybrid node:
```

let hybrid sawtooth() = x where
rec der x = 1.0 init 0.0 reset up(last x -. 1.0) -> 0.0
val sawtooth : unit -C-> float

```

Each time last x -. 1.0 crosses zero from a negative to positive value, x is reset to zero. Note also the use of last to break what would otherwise be an invalid causality cycle.

\subsection*{2.2.3 Periodic Timers}

A particular form of zero-crossings is provided to model timers. A timer with phase phase and period p generates an event at every instant where \(t=\) phase \(+n \cdot\) period with \(n \in \mathbb{N}^{+}\). While such timers can be expressed directly using the features described in the previous two sections,
```

let hybrid timer(phase, p) = z where
rec der t = 1.0 init -. phase reset z -> -. p
and z = up(last t)
val timer : float * float -C-> zero

```

Zélus also provides a special period operator, which, for the moment at least, is restricted to timers of constant phase and period. For example, for a timer with phase \(=10.3\) and \(p=20.5\) one can write period \(10.3(20.5)\). Such timers are not realized using zero-crossings, but rather by a dedicated and more efficient mechanism. At every discrete transition, the minimal 'next value' of all timers is computed to define the next integration horizon.

\subsection*{2.3 Hierarchical Automata and ODEs}

We now illustrate how to combine ODEs with hierarchical automata using as an example, an hysteresis controller for a heater. We will first consider the heater dynamics. It has two modes: when active is true, the temperature increases; when active is false, it decreases. The hysteresis controller also has two modes. In the Idle mode, it outputs active \(=\) false until the temperature temp reaches the lower threshold t_min. The controller then stays in the

Active mode until temp reaches the upper threshold t_max. The complete system is obtained by composing the heater and controller in parallel. Observe that the boolean signal active only changes when a zero-crossing occurs. This is a property guaranteed by the type system for all discrete (non-float) data types.
```

let c = 1.0
let k = 1.0
let temp0 = 0.0
let t_min = 0.0
let t_max = 1.0
(* an hysteresis controller for a heater: [c] and [k] are constant. *)
let hybrid heater(active) = temp where
rec der temp = if active then c -. k *. temp else -. k *. temp init temp0
let hybrid hysteresis_controller(temp) = active where
rec automaton
| Idle -> do active = false until (up(t_min -. temp)) then Active
| Active -> do active = true until (up(temp -. t_max)) then Idle
let hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)

```

The biggest difference between the automaton in the program above and those of previous programs is in the transition guards. The transition conditions of automata in a continuous context-that is, of kind C-may be either signal patterns, as described in section 1.4.11, or zero-crossing expressions, as in the example above. Notably, however, they may not be boolean expressions, though boolean expressions may still be combined with signal patterns. The equations within mode bodies inherit the kind of the automaton. In this example, we simply define active using constant expressions, but it would also have been possible to define signals by their derivatives (using der).

As always (continuous) automata may be nested hierarchically and composed in parallel. The extra structure is compiled away to generate a function that computes the temperature temp in tandem with a numeric solver and that monitors the active zero-crossing expression. The type system for automata [3] guarantees that mode changes will only occur at discrete instants, that is, in response to zero-crossing or timer events.

The ability to program with both automata and ODEs gives a restricted form of the hybrid automata of Maler, Manna, and Pnueli [15]. In particular, hybrid automata in Zélus are deterministic:
1. When several transitions can be fired, for example because several conditions are true, the first one in order is taken.
2. It is not possible to associate an invariant with a state. The current state is exited when a condition on an outgoing transition fires.

We will present a slightly more complicated hybrid automata by returning to the bouncing ball example of section 2.2.2. First we reprogram the vertical dynamics of the ball, this time using an external function, World.ground(), to retrieve the height of the ground as a function of the horizontal position.
```

(* [World.ground(x)] returns the position in [y] *)
let x_0 = 0.0
let y_0 = 8.0
let x_v = 0.72
let g = 9.81
let loose = 0.8
(* The bouncing ball *)
let atomic hybrid ball(x, y_0) = (y, y_v, z) where
rec der y = y_v init y_0
and der y_v = -. g init 0.0 reset z -> (-. loose *. last y_v)
and z = up(World.ground(x) -. y)
val x_0 : float
val y_0 : float
val x_v : float
val g : float
val loose : float
val ball : float * float -C-> float * float * zero

```

We now incorporate these dynamics into an automaton with two modes. In Bouncing, it behaves as explained previously but for two details. When the velocity of the ball drops below a certain threshold, the system enters a Sliding mode and we gradually reduce the horizontal velocity. When Sliding, the ball only moves in the vertical dimension, until it reaches the edge of a step (as determined by a World.ground_abs() function).
```

let eps = 0.01
hybrid ball_with_modes(x_0, y_0) = (x, y) where
rec init y_start = y_0
and der x = x' init x_0
and
automaton
| Bouncing ->
(* the ball is falling with a possible bounce. *)
local z, y_v in
do
(y, y_v, z) = ball(x, y_start)
and x' = x_v until z on (y_v < eps) then Sliding(World.ground_abs(x),
World.ground(x))
| Sliding(x0, y0) ->
(* the ball is fixed, i.e., the derivative for y is 0 *)

```
```

            do
            y = y0
        and der x' = -0.8 *. x'
        until up(x -. x0) then do y_start = y in Bouncing
    end
val eps : float
val ball_with_modes : float * float -C-> float * float

```

This example demonstrates the hierarchical instantiation of hybrid nodes, the use of local variables in modes, shared variable resets on transition actions (...then do y_start \(=0.0\) in...) and a new on operator of type zero * bool -> zero which combines zero-crossing expressions and boolean conditions. The on operator emits an event when the zero-crossing occurs and the condition evaluates to true at that instant.

Futher examples are available onlin \(4^{4}\) and in published papers [6].

\footnotetext{
\(4^{\text {http://zelus.di.ens.fr/examples.html }}\)
}

\section*{Chapter 3}

\section*{Compilation and Simulation}

This chapter explains the basic principles behind the compilation and execution of Zélus programs. Understanding these details is useful for linking Zélus and OCaml code, either by importing OCaml values into Zélus or by exporting compiled Zélus code into OCaml.

\subsection*{3.1 Combinatorial Functions}

Combinatorial functions are defined by the form:
\[
\text { [let] [fun] ident pattern }=\text { result-expr }
\]

They are compiled directly into OCaml functions without any particular transformations.

\subsection*{3.2 Sequential Nodes}

Synchronous, possibly stateful, functions are defined by the form:
\[
\text { [let] [node] ident pattern }=\text { result-expr }
\]

They are translated as follows:
- A record type ident is introduced to represent the current value of the node's internal state. Such records contains fields for each unit delay and -> within the node, and also for every other node instantiated within it. Values of this type are thus trees of nested records that reflect the structure of instantiations.
- A step function ident_step is introduced. Calling ident_step self pattern, where self is the current state of the node (of type ident) and pattern passes the current value of the input, returns the current output of the node and directly updates the state record self.
- A reset function ident_reset is also introduced. Calling ident_reset self resets the state self to its initial value.
- Finally, there is also an allocation function ident_alloc () which returns an initial state (of type ident).

Figure 3.1: Basic structure of the hybrid simulation algorithm

\subsection*{3.3 Hybrid Nodes and Interaction with a Solver}

Hybrid nodes are also compiled into several functions. Their execution requires run-time support to coordinate phases of integration by a numeric solver with the execution of discrete reactions. Before outlining the form of compilation, we describe the principles behind the simulation loop provided by the run-time.

The simulation loop of a hybrid system can be formalized as a synchronous function that defines four streams \(l x(n), y(n), z(n)\) and \(t(n)\), with \(n \in \mathbb{N}\). Here, \(t(n)\) is the increasing sequence of simulation times at which the solver stops 1 of the continuous state variables, that is, the variables defined by their derivatives in the original model; \(y(n)\) is the value at time \(t(n)\) of the model's discrete state; and \(z(n)\) signals any zero-crossings occurring at instant \(t(n)\).

The simulation loop function has two modes: discrete \((D)\) and continuous \((C)\). The two modes and the transitions between them are sketched in figure 3.1. The function begins in \(D\), where all computations that may change the discrete state or that have side effects are executed. Several discrete steps may be executed without advancing the simulation time \(t\) in what is termed an event cascade. Simulation time is advanced in \(C\) where a numeric solver is invoked to approximate the values of ODEs within the model. The function loops back to the \(D\) mode whenever a zero-crossing occurs section 2.2 .2) or a timer horizon section 2.2.3) is reached. We now formalize the details of the two modes.

The Continuous Mode (\(C\)) In the continuous mode \(C\), a numeric solver computes an approximation of the solution of the set of (active) ODEs within a model. We represent the solver abstractly as a function solve \((f)(g)\) parameterized by two other functions \(f\) and \(g\) :
- \(x^{\prime}(\tau)=f(y(n), \tau, x(\tau))\) yields the derivatives of continuous state variables \(x\) at \(\tau \in \mathbb{R}\), given the discrete states \(y(n)\) and an approximation to the continuous states \(x(\tau)\);
- upz \((\tau)=g(y(n), \tau, x(\tau))\) computes the value of the zero-crossing expressions upz given the same arguments as \(f\).

For a given \(f\) and \(g\), the continuous mode \(C\) computes \(s, l x, z\), and \(t\) such that:
\[
(l x, z, t, s)(n+1)=\operatorname{solve}(f)(g)(s, y, l x, t, \text { step })(n)
\]
where

\footnotetext{
\({ }^{1}\) They are called major time steps in Simulink.
}
\(s(n) \quad\) is the internal state of the solver at instant \(t(n) \in \mathbb{R}\). Calling solve \((f)(g)\) updates the state to \(s(n+1)\).
\(l x(n) \quad\) is the value of \(x\) at instant \(t(n)\), that is, \(l x(n)=x(t(n)) ; l x\) is a discrete-time signal while \(x\) is a continuous-time signal.
\(t(n+1)\) is bounded by the horizon given to the solver \(t(n)+\operatorname{step}(n)\), that is,
\[
t(n) \leq t(n+1) \leq t(n)+\operatorname{step}(n)
\]
\(x \quad\) is a solution of an ODE, parameterized by the current discrete state \(y(n)\), that is:
\[
\left.\forall T \in[t(n), t(n+1)+\operatorname{margin}] x(T)=l x(n)+\int_{t(n)}^{T} f(y(n), \tau, x(\tau))\right) d \tau
\]

Integration is performed on an interval strictly larger than \([t(n), t(n+1)]\) to account for possible zero-crossings at instant \(t(n+1)\). The constant margin is considered as a parameter of the solver. In practice, solve \((f)(g)\) computes a finite sample of approximated values on the interval \([t(n), \mathrm{t}(\mathrm{n}+1)+\) margin \(]\). The value of \(l x(n+1)\) is
\[
l x(n+1)=x(t(n+1))
\]
\(z(n+1)\) signals any zero-crossings detected at time \(t(n+1)\). It comprises \(k \in \mathbb{N}\) boolean elements \(z(n+1)(i)\) such that:
\[
\begin{aligned}
z(n+1)(i)= & (\forall T \in[t(n), t(n+1)) \operatorname{upz}(T)(i)<0) \\
& \exists m \leq \operatorname{margin} .(\forall T \in[t(n+1), t(n+1)+m] \operatorname{upz}(T)(i) \geq 0)
\end{aligned}
\]

This definition assumes that the solver also stops whenever a zero-crossing expression passes through zero from positive to negative. An event occurs with a transition to the discrete phase \((D)\) when a zero-crossing occurs or the horizon \(t(n)+\operatorname{step}(n)\) is reached:
\[
\text { event }=z(n+1)(0) \vee \cdots \vee z(n+1)(k) \vee t(n+1)=t(n)+\operatorname{step}(n)
\]

If the solver raises an error (for example, a division by zero occurs, or a suitable approximation cannot be found), we consider that the simulation fails.

The Discrete Mode (\(D\)) All discrete changes occur in this mode. It is entered when an event occurs during integration. During a discrete phase, the function next defines \(y, l x\), step, encore, \(z\), and \(t\) :
\[
\begin{aligned}
(y, l x, \text { step }, \text { encore })(n+1) & =n e x t(y, l x, z, t)(n) \\
z(n+1) & =\text { false } \\
t(n+1) & =t(n)
\end{aligned}
\]
where:
\(y(n+1) \quad\) is the new discrete state (outside of mode \(D, y(n+1)=y(n))\);
\(l x(n+1) \quad\) is the new continuous state, which may be directly changed in the discrete mode;
\(\operatorname{step}(n+1) \quad\) is the new step size;
encore \((n+1)\) is true if an additional discrete step must be performed. Function next can decide to trigger another discrete event instantaneously causing an event cascade.
\(t(n) \quad\) (the simulation time) is unchanged during a discrete phase.
The initial values for \(y(0), l x(0)\) and \(s(0)\) are given by an initialization function init. Finally, solve \((f)(g)\) may decide to reset its internal state when the continuous state changes. If init_solve \((l x(n), s(n))\) initializes the solver state, then we have:
\[
\begin{aligned}
\text { reinit } & =(l x(n+1) \neq l x(n)) \\
s(n+1) & =\text { if reinit then init_solve }(l x(n+1), s(n)) \text { else } s(n)
\end{aligned}
\]

These definitions give a synchronous interpretation of the simulation loop, seen as a stream function that iteratively computes the sequences \(l x, y\) and \(t\) at instant \(n+1\) relative to their values at instant \(n\) and an internal state. By writing solve \((f)(g)\), we abstract the actual choices of the integration method and zero-crossing detection algorithms. A more detailed description of solve \((f)(g)\) would be possible (for example, as an automaton with two states: one that integrates, one that detects zero-crossings) but these details have no influence on the code generation problem which is independent of such simulation details.

Hybrid functions are defined by the form:
\[
\text { [let] [hybrid] ident pattern }=\text { result-expr }
\]

They are compiled into six functions:
- A record type ident is introduced to represent the current value of the function's internal state. In addition to fields for each unit delay, -> operator, and node instantiation within the function body, it also contains fields for continuous state variables (those defined with der) and zero-crossing expressions (those registered with up()).
- A step function ident_step is introduced. Calling ident_step self pattern, where self is the current state of the node (of type ident) and pattern passes the current value of the input, returns the current output of the node and directly updates the state record self.
- The abstract function \(f\), in the above formalization, is realized by the function ident_derivatives self pattern that computes the current values of derivatives from the current state and stores them in the internal state self.
- The abstract function \(g\), in the above formalization, is realized by the function ident_crossings self pattern that computes the current values of zero-crossing expressions and stores them in the internal state self.
- A reset function ident_reset is also introduced. Calling ident_reset self resets the state self to its initial value.
- Finally, there is also an allocation function ident_alloc () which returns an initial state (of type ident).

\section*{Part II}

\section*{Reference manual}

\section*{Chapter 4}

\section*{The language}

The syntax of the language is presented in BNF-like notation. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like that). Square brackets [...] denote optional components. Curly brackets \(\{\ldots\)... denotes zero, one, or several repetitions of the enclosed components.

\subsection*{4.1 Lexical conventions}

We adopt the lexical conventions of OCam \({ }^{1}\) for blanks, comments, identifiers, integer literals, floating-point literals, character literals, string literals, and prefix and infix symbols.

\section*{Keywords}

The following identifiers are reserved as keywords.
\begin{tabular}{lllllllll}
as & automaton & atomic & inline & continue & disc & do & done & until \\
unless & emit & present & match & period & with & end & fun & node \\
hybrid & discrete & init & in & and & open & val & local & unsafe \\
let & rec & where & open & fby & next & up & der & reset \\
pre & type & every & true & false & or & on & last & if \\
then & else & quo & mod & land & lor & lxor & lsl & lsr \\
asr & & & & & & & &
\end{tabular}

The following character sequences are also keywords.
\begin{tabular}{lllllllll}
\(->\) & \(>\) & \(<\) & \(=\) & \(<>\) & \(>=\) & \()\) & \(\&\) & \(?\) \\
+ & - & \(*\) & \(/\) & \(;\) & \(<=\) & \((\) &.
\end{tabular}

\subsection*{4.2 Values}

\subsection*{4.2.1 Basic values}

Zélus provides the basic values of OCaml-that is, integer numbers, floating-point numbers, characters and character strings - and with the same conventions.

\footnotetext{
\({ }^{1}\) http://caml.inria.fr/pub/docs/manual-ocaml/lex.html
}

\subsection*{4.2.2 Tuples, records, sum types}

Zélus provides the tuples of OCamlwith the same conventions. It also provides records and sum types with constructors of arity 0 .

\section*{Functions}

Functions map values to other values. They are separated into three main categories: pure or combinatorial functions, discrete-time stateful functions, and continuous-time stateful functions.

\subsection*{4.3 Global names}

The naming conventions in Zélus are inherited from OCamlsubject to the restrictions detailed in this section.

Names in Zélus fall into one of three syntactic classes:
- value-name for value names,
- typeconstr-name for type constructors, and
- module-name for module names.

\subsection*{4.3.1 Naming values}
\begin{tabular}{lll}
value-name & \(::=\) lowercase-ident \\
& & (operator-name) \\
operator-name & \(::=\) & prefix-symbol \(\mid\) infix-symbol \(|*|=\mid\) or \(|\&| \quad|\mid\) \\
constructor-name & \(::=\) & capitalized-ident \\
& & \\
& & \\
typeconstr-name & \(::=\) & lowercase-ident \\
module-name & \(::=\) & capitalized-ident
\end{tabular}

The syntactic class of lowercase-ident is the set of identifiers starting with a lowercase letter whereas capitalized-ident is the set of of identifiers starting with a capital letter.

\subsection*{4.3.2 Referring to named values}
\begin{tabular}{rrl}
value-path & \(::=\) & value-name \\
constructor & \(::=\) & module-name . value-name \\
& & constructor-name
\end{tabular}\(\quad\) module-name . capitalized-ident

A value can be referred to either by its name or by its name qualified with a module name.

\subsection*{4.4 Types}
\[
\begin{aligned}
& \text { type }::= \begin{array}{l}
\text { ident } \\
\\
\\
\\
\\
\\
\\
\\
\text { type } \text { type } \text {) type }\}
\end{array} \\
& \begin{array}{l}
\text { type typeconstr } \\
\text { (type }\{, \text { type }\} \text {) typeconstr } \\
\text { typeconstr }
\end{array} \\
& \text { ftype }::=\text { type }->\text { type }
\end{aligned}
\]

\subsection*{4.5 Constants}
\begin{tabular}{rc}
immediate & \(::=\) \\
integer-literal \\
& \(|\)\begin{tabular}{l}
float-literal \\
char-literal
\end{tabular} \\
& \\
string-literal
\end{tabular}

Constants are formed of literals from the base types (integers, floating-point numbers, characters, character strings, and booleans).

\subsection*{4.6 Patterns}

Patterns allow binding identifiers to the components of data structures.
```

pattern ::= ident
| ( pattern )
| pattern as ident
| -
| pattern , pattern { , pattern }
| ()
| immediate
| constructor
| { label = pattern {; label = pattern } }

```

\subsection*{4.7 Signal Patterns}

Signal patterns allows for testing the presence of signals and for binding their values with patterns. A boolean expressions is also considered a signal pattern (in non-continuous contexts).
\(\left.\begin{array}{rl}\text { signal-pattern } & := \\
\text { simple-expr } \\
& \text { simple-expression pattern } \\
\text { signal-pattern on simple-expr } \\
\text { signal-pattern \& signal-pattern }\end{array}\right\}\)\begin{tabular}{l}
signal-pattern || signal-pattern
\end{tabular}

\subsection*{4.8 Expressions}
```

    simple-expr ::= value-path
                                constructor
                                immediate
                                ( expr )
            | { label = expr {; label = expr } }
                            simple-expr . label
                                    pattern-list ::= pattern { pattern }
    expr ::= simple-expr
| value-path simple-expr
| let [rec]definition { and definition} in expr
if expr then expr else expr
prefix-op expr
expr infix-op expr
up expr
not expr
expr fby expr
pre expr
expr -> expr
last ident
match expr with match-handlers [ end ]
reset expr every expr
present present-handlers [ end ]
infix-op ::= infix-symbol | * | = | or | || | \&
match-handlers ::= [ | ] pattern -> expr { | pattern -> expr }
present-handlers ::= [|] signal-pattern -> expr { | signal-pattern -> expr }

```

The precedence and associativity rules of OCamlare adopted. The rules for Zélus-specific primitives are, in order from highest to lowest precedence:
\begin{tabular}{|l|l|}
\hline last & right \\
pre & - \\
function application & - \\
fby & left \\
\(\ldots\) let,... & - \\
-> & right \\
\hline
\end{tabular}

\subsection*{4.8.1 Simple expressions}

\section*{Constants}

A constant expression, like 1 or false, denotes an infinite stream of that constant.

\section*{Variables}

A variable evaluates to the value bound to that variable in the current evaluation environment.

\section*{Parenthesized expressions}

The expression (expr) has the same value as expr.

\section*{Local definitions}

The let and let rec constructs bind variables locally. The expression
\[
\text { let definition }{ }_{1} \text { and } \ldots \text { and definition } n_{n} \text { in expr }
\]
defines values to be visible in expr. In a let definition, variables names appearing on the right of an equality are bound to their definition in the current environment. This environment does not contains names from the let definition itself.

Recursive definitions of variables are introduced by let rec:
\[
\text { let rec } \text { definition }_{1} \text { and } \ldots \text { and definition } n_{n} \text { in } \operatorname{expr}
\]

In a recursive definition the current environment also contains names defined within the let construction itself.

\subsection*{4.8.2 Operators}

The operators written infix-op in the grammar are applied by placing them between two expressions. The operators written prefix-op in the grammar are applied by placing them in front of an expression.

The basic operators provided by OCaml (from the Pervasives module) are imported. Scalar values imported from the host language become stream operators that are applied pointwise.

\section*{Unit Delays}

The expression pre expr denotes the delayed stream. The \(n\)th value of the result is the \(n-1\) th value of expr. The value at the first instant is undefined.

The binary operator fby is the initialized delay operator. The first value of \(\operatorname{expr} r_{1}\) fby expr \(r_{2}\) is the first value of expr \({ }_{1}\). The \(n\)th value is the \(n-1\) th value of \(e x p r_{2}\).

These two delay operators may only be activated on a discrete clock. In Zélus (version 1.2) this is ensured by imposing that they appear only in contexts of kind \(k=\mathrm{D}\).

\section*{Initialization Operation}

The expression expr \(_{1}\)-> expr \(r_{2}\) initializes a stream. The expr \({ }_{i}\) must be streams of the same type. The first value of the result is the first value of \(\operatorname{expr}_{1}\), after which the \(n\)th value of the result is the \(n\)th value of expr \(2_{2}\).

The initialization operator must be activated on a discrete clock.

\section*{Access to a Shared State Variable}

The expression last ident denotes the previous computed value of the variable ident.
As opposed to the unit delays, pre and fby, the operator last only applies to variable names and it can be activated on both discrete and continuous clocks. Nonetheless, when last \(x\) appears in a continuous context, Zélus (version 1.2) imposes that \(x\) be a continuous state variable; in other words, it must be defined directly by an equation of the form der \(x=e\).

\section*{Point-wise conditional}

The expression if expr \(_{1}\) then expr \(_{2}\) else expr \(_{3}\) is the pointwise conditional: expr \({ }_{1}\) must be a boolean stream and expr \(2_{2}\) and expr \({ }_{3}\) must be two streams of the same type. The type of the result is the type of expr \(2_{2}\).

Warning: this operator is strict, that is, at every step, both branches are evaluated regardless of the value of the condition. The result at instant \(n\) is the value of expr \(r_{2}\) if the value of expr \(r_{1}\) is true and the value of expr \(r_{3}\) otherwise.

\section*{Function application}

The expression value-path simple-expr is the application of the function value-path to the expression simple-expr.

\subsection*{4.8.3 Control Structures}

The constructions reset, match/with, reset, and automaton are control-structures which combine equations and thus belong to the syntactic class of definitions (see section 4.9).

A derived form belonging to the syntactic class of expressions is also provided. The derived form is useful for textual programming whereas the original one is motivated by the graphical representation of dataflow programs. The derived form is only syntactic sugar for the original form.

\section*{Pattern Matching over Expressions}

The expression match expr with pat -> \(\operatorname{expr}_{1}|\ldots| \operatorname{pat}_{n}\)-> \(\operatorname{expr}_{n}\) end is a short-cut for the expression:
let match expr with
| pat \(t_{1}\)-> do \(o=\exp r_{1}\) done
| pat \(n_{n}\)-> do \(o=\operatorname{expr}_{n}\) done
end in
o
provided that \(o\) is a fresh name.

\section*{Modular Reset over Expressions}

The expression reset expr \(r_{1}\) every \(\operatorname{expr}_{2}\) is a short-cut for let reset \(o=\operatorname{expr}_{1}\) every \(\operatorname{expr}_{2}\) in \(o\), provided that \(o\) is a fresh name.

\section*{Automata}

The expression automaton state \(_{1}\)-> \(\operatorname{expr}_{1}\) trans \(_{1}|\ldots|\) state \(_{n}\)-> \(\operatorname{expr}_{n} \operatorname{trans}_{n}\) end is a shortcut for the expression:
```

let automaton
| state
| staten -> do o = exprn transn
end in
o

```
provided that \(o\) is a fresh name.

\section*{Testing Presence}

The expression present spat \(_{1}->\operatorname{expr}_{1}|\ldots|\) spat \(_{n}->\operatorname{expr}_{n}\) end is a short-cut for the expression:
```

let present
| spat }\mp@subsup{|}{1}{-> do o = expr1 done
| spatn -> do o = exprn done
end in
o

```
provided that \(o\) is a fresh name.

\subsection*{4.9 Definitions}

\section*{Global Value Definition}

A global definition \(i d e n t=\) expr defines the value of the global identifier \(i d e n t\) to be equal to the value of expr in the current global environment. The expression expr must be combinatorial.

\section*{Global Function Definition}

A global function definition is of the form:
\[
\text { [let] [kind] ident pattern }=\text { result-expr }
\]
with
\[
\text { function-kind }::=\text { fun } \mid \text { node | hybrid }
\]
where
- fun is the kind of combinatorial functions-typically a function imported from the host language and applied pointwise. Its body result-expr must only contain combinatorial operations. In particular, it may not invoke stateful functions like unit delays or integrators.
- node is the kind of (possibly) stateful discrete-time functions-typically a synchronous function that must be activated on a discrete-time scale. Its body result-expr must only contain combinatorial and discrete-time stateful operations. In particular, it may not invoke continuous-time operators like integrators or zero-crossing detection.
- hybrid is the kind of (possibly) stateful continuous-time functions-typically a function that contains ODEs and/or zero-crossing detection and must be activated continuously. It may contain all kinds of operator provided that discrete-time operations are activated on discrete events.

\section*{Alternative Syntax for Local Definitions}

The language provides an alternate form of local definitions for returning the results of functions. The expression:
\[
\text { expr where [rec] definition }{ }_{1} \text { and } \ldots \text { and definition } n_{n}
\]
has the meaning of:
\[
\text { let }[\mathrm{rec}] \text { definition }_{1} \text { and } \ldots \text { and } \text { definition }_{n} \text { in } \operatorname{expr}
\]

\section*{Equation}

The equation pattern \(=\) expr defines the current value of pattern to be equal to the current value of expr.

\section*{Initialization of a State Variable}

A definition init \(i d e n t=\operatorname{expr}\) initializes the value of last ident with the value of expr.

\section*{Signal Emission}

An equation emit \(i d e n t=\operatorname{expr}\) defines the signal ident to be equal to the value of expr. At every instant, a signal can be absent or present. When present, it carries a value.

\section*{Pattern Matching}
\[
\begin{aligned}
& \text { def-match-handlers }::=[1] \text { def-match-handler }\{\text { I def-match-handler }\} \\
& \text { def-match-handler }::=\text { pattern -> definition }
\end{aligned}
\]

The construct match expr with pattern \(_{1}\)-> action \({ }_{1}\) | ... | pattern \(n_{n}\)-> action \(n_{n}\) end is used to combine \(n\) complementary sub-streams. Each of these streams is on the clock defined by the instants where the value of \(e\) has the form pattern \(_{i}\).

Each definition can define local and shared variables. Shared variables are variables that may be defined and used across several branches and which are not bound by a local construct.

\section*{Reinitialization}

The construct reset definition \({ }_{1}\) and ... and definition \(n_{n}\) every expr allows for resetting the computation defined by a set of definitions. All the defined values and expression expr must be on the same clock. This construction acts as a regular multi-definition except that the streams and automata defined in definition \(_{1}, \ldots\), definition \(n_{n}\) restart with their initial values every time the current value of expr is true. In particular, automata appearing in definition \(n_{1}, \ldots\), definition \(n_{n}\) restart in their initial states.

\section*{Hierarchical Automata}

The construction automaton def-automaton-handler | ... | def-automaton-handler end defines an automaton. Each branch of the automaton has either the form:
```

constructor -> automaton-definition

```
or the form
constructor pattern -> automaton-definition
where constructor denotes the name of the state. This state may be parameterized by a pattern. The first branch defines the initial state and this state cannot be parameterized unless an initialization clause is given.

The action associated to a state has the form:
```

local-definitions do definition-list transitions

```

It comprises a (possibly empty) sequence of local definitions to the state, a definition list of shared variables, and a (possibly empty) list of transitions to be tested sequentially. Transitions may have several forms. Writing:
```

until transition { else transition }

```
defines a weak transition which is executed within the current reaction but at the end of it, that is, after definitions from the current state have been executed. Transitions are all evaluated in the same instant but sequentially: the first transition to succeed determines the target state at the next reaction. Writing:
```

unless transition { else transition }

```
defines a strong transition which is executed before the reaction starts, that is, before definitions from the current state have been executed. Transitions are all evaluated in the same instant but sequentially: the first transition to succeed determines the current active state.

A transition may reset or not the history of the state being entered. Writing:
```

signal-pattern then [ local-definitions do definition-list] in state

```
indicates that the target state is entered by reset, that is, all streams and automata in the target state restart with their initial values. Writing:
```

signal-pattern continue [ local-definitions do definition-list] in state

```
has the same behavior except that the target state is entered by history, that is, no reset occurs. For both kinds of transition (reset or history), the condition signal-pattern is tested. When it is true, local-definitions do definition-list in state are executed in the same reaction.

The language provides two transition shorthands:
1. The transition then state is shorthand for until true then state
2. The transition continue state is shorthand for until true continue state.

Zélus (version 1.2) forbids the mixing of weak and strong conditions within a single automaton (not counting nested automata). This differs from Lucid Synchrone, for example, which allows for arbitrary combinations within an automaton. We made this choice to simplify code generation and allow for more efficient execution. But we may lift this restriction in a future release.

\section*{Testing the Presence of a Signal}

The present construct resembles the pattern-matching one. It has the form:
present def-present-handlers [else definition] end
where a handler has the form:
\[
\begin{array}{ll}
\text { def-present-handlers } & ::=[\mid] \text { def-present-handler }\{\mid \text { def-present-handler }\} \\
\text { def-present-handler } & ::=\text { signal-pattern }->\text { definition }
\end{array}
\]

At every instant, signal patterns are tested sequentially and the one which first succeeds determines the action to execute. The optional handler:

> else definition
defines a condition which always succeed and thus gives a default action.

\subsection*{4.10 Type definition}

Abstract types can be defined. Their syntax is inherited from OCaml and recalled here.
\begin{tabular}{|c|c|c|}
\hline type-definition & & type typedef \(\{\) and typedef \(\}\) \\
\hline typedef & \[
\begin{gathered}
::= \\
\mid \\
\mid
\end{gathered}
\] & [type-params] typeconstr-name sum-type-def record-type-def \\
\hline sum-type-def & ::= & [I] one-sum-def \(\{1\) one-sum-def \(\}\) \\
\hline one-sum-def & ::= & capitalized-ident \\
\hline record-type-def & :: \(=\) & \{ label-type \(\{\); label-type \} \} \\
\hline label-type & ::= & ident : type \\
\hline type-params & & \begin{tabular}{l}
, ident \\
(' ident \(\{\), ' ident \(\}\))
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.11 Module implementation}
\[
\begin{aligned}
\text { implementation } & ::=\{\text { impl-phrase }[; ;]\} \\
\text { impl-phrase } & ::=\begin{array}{l}
\text { value-definition } \\
\\
\end{array} \\
& \left\lvert\, \begin{array}{l}
\text { type-definition } \\
\text { open module-name }
\end{array}\right.
\end{aligned}
\]

A module implementation comprises a sequence of implementation phrases. An implementation phrase either opens a module, declares a type, or defines a sequence of values.
- The instruction open modifies the list of opened modules by adding the module name to the head of the list of opened modules.
- The type definition defines a type from the implementation phrases following the definition.
- The value definition defines global values.

\subsection*{4.12 Importing values}

Scalar interfaces written in OCaml can be imported into Zélus. In the current implementation, a restricted subset of OCaml interfaces is considered. The syntax is the following:
\(\left.\begin{array}{rlrl}\text { scalar-interface } & ::= & \text { \{scalar-interface-phrase }[; ;]\} \\ \text { scalar-interface-phrase } & ::= & \text { value-declaration } \\ & \mid & \text { type-definition }\end{array}\right\}\)

When a value is imported from OCaml, it is automatically lifted to the stream level:
- A scalar value with a basic or declared type becomes an infinite stream of that type.
- A scalar functional value becomes a stream functional value applied pointwise to its argument.

\section*{Chapter 5}

\section*{zeluc}

The Zélus compiler is called zeluc. Given a list of options and a filename, it transforms Zélus source code into OCaml source code.
```

zeluc [option] filename

```
where options are:
\begin{tabular}{ll}
-v & Set verbose mode \\
-version & The version of the compiler \\
-I <dir> & Add <dir> to the list of include directories \\
-i & Print types \\
-ic & Print causality types \\
-where & Locate standard libray \\
-stdlib <dir> & Directory for the standard library \\
-nopervasives & Do not load the pervasives module \\
-typeonly & Stop after typing \\
-s <node> & Simulates the node <node> and generates a file <node>.ml \\
& For hybrid programs, compile with: \\
-sampling <p> & bigarray.cma unix.cma -I +sundials sundials_cvode.cma zllib.cma \\
-check <n> & Check that the simulated node returns true for n steps \\
-gtk2 & Use lablgtk2 interface. \\
-dzero & Compile with: -I +lablgtk2 lablgtk.cma zllibgtk.cma \\
-nocausality & \begin{tabular}{l}
Turn on discrete zero-crossing detection \\
(undocumented)
\end{tabular} \\
-noinit & \begin{tabular}{l}
(undocumented)
\end{tabular} \\
-inline <n> & Level of inlining \\
-help & Display this list of options \\
--help & Display this list of options
\end{tabular}

Three kinds of arguments are accepted:
1. Arguments ending in .zls are interpreted as Zélus source files. These files must contain sequences of node declarations. The zeluc compiler turns .zls files into a compiled interface \(\mathrm{f} . \mathrm{zci}\) and an OCaml file f.ml. The .ml file defines the corresponding transition functions for the values defined in the input file.
2. Arguments ending in .zli are interpreted as Zélus interface files. These files define type signatures for values implemented elsewhere. The zeluc compiler turns .zli files into a compiled interface f.zci.
3. Arguments ending in .mli are interpreted as OCaml interface files. The zeluc compiler turns .mli files into a compiled interface f.zci. The values defined in f.mli are considered to be a scalars.

\section*{SEE ALSO}

The distribution and manual are available at http://zelus.di.ens.fr

\section*{FILES}
/usr/local/bin/zeluc the compiler
/usr/local/lib/zeluc the standard library

\section*{Bibliography}
[1] E. A. Ashcroft and W. W. Wadge. Lucid, a non procedural language with iteration. Communications of the ACM, 20(7):519-526, 1977.
[2] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. Divide and recycle: types and compilation for a hybrid synchronous language. In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES'11), Chicago, USA, April 2011.
[3] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. A hybrid synchronous language with hierarchical automata: Static typing and translation to synchronous code. In ACM SIGPLAN/SIGBED Conference on Embedded Software (EMSOFT'11), Taipei, Taiwan, October 2011.
[4] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with events and relations: the SIGNAL language and its semantics, Science of Computer Programming, 16:103-149, 1991.
[5] G. Berry. The Esterel v5 language primer, version 5.21 release 2.0. Draft book, 1999.
[6] T. Bourke and M. Pouzet. Zélus, a Synchronous Language with ODEs, In International Conference on Hybrid Systems: Computation and Control (HSCC 2013), Philadelphia, USA, April 2013. ACM.
[7] Timothy Bourke and Arcot Sowmya. Delays in Esterel. In Albert Benveniste, Stephen A. Edwards, Edward Lee, Klaus Schneider, and Reinhard von Hanxleden, editors, 16th Open International Workshop on Synchrononous Programming (SYNCHRON 2009), number 09481 in Dagstuhl Seminar Proceedings, pages 55-84, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
[8] P. Caspi, G. Hamon, and M. Pouzet. Modeling and Verification of Real-Time Systems: Formalisms and Software Tools, chapter Synchronous Functional Programming with Lucid Synchrone. ISTE Ltd, 2007.
[9] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous dataflow with state machines. In ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.
[10] J.-L. Colaço and M. Pouzet. Type-based initialization analysis of a synchronous dataflow language. International Journal on Software Tools for Technology Transfer (STTT), 6(3):245-255, August 2004.
[11] G. Dahlquist and \(\AA\). Björck. Numerical Methods in Scientific Computing: Volume 1. SIAM, 2008.
[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming language Lustre. Proceedings of the IEEE, 79(9):1305-1320, September 1991.
[13] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31(3):363-396, September 2005.
[14] R. Lublinerman, C. Szegedy, and S. Tripakis. Modular code generation from synchronous block diagrams-modularity vs. code size. In ACM Principles of Programming Languages (POPL), 2009.
[15] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Real-Time: Theory in Practice, volume 600 of LNCS, pages 447-484. Springer, 1992.
[16] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific construct for the development of safe critical systems. Science of Computer Programming, 46:219-254, 2003.
[17] M. Pouzet and P. Raymond. Modular static scheduling of synchronous data-flow networks: An efficient symbolic representation. In ACM International Conference on Embedded Software (EMSOFT'09), Grenoble, France, October 2009.
[18] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with Matlab. Cambridge University Press, 2003.```

[^0]: ${ }^{1}$ Warning: the manual is outdated w.r.t the source code available on GitHub (Version 2.1, 2020). This manual will be updated soon.

[^1]: 2http://www.di.ens.fr/~pouzet/lucid-synchrone/
 3^{3} http://www.esterel-technologies.com/products/scade-suite/
 ${ }^{4}$ https://www.llnl.gov/casc/sundials/
 5 https://www.modelica.org

[^2]: ${ }^{1}$ The construction last is eliminated during compilation by a similar transformation.

[^3]: ${ }^{2}$ Note, though, that Modular code generation where a function is split into a minimal set of functions, as proposed in [17, [14], is not implemented in the current version of the compiler. Some functions are inlined, however, according to the dependency information computed by the causality analysis.

[^4]: ${ }^{3}$ For OCaml programmers: signals are like streams of an option type.

[^5]: ${ }^{4}$ Unlike in Esterel where signal values are maintained implicitly and can be accessed even in instants where they are not emitted. The approach of Zélus is slightly more cumbersome, but it is safer and avoids initialization issues and the allocation of a state variable.

[^6]: 5 http://www.esterel-technologies.com/products/scade-suite/

[^7]: ${ }^{6}$ As in OCaml, identifiers starting with an uppercase letter are considered to be data type constructors and cannot be used as variable names.

[^8]: ${ }^{1}$ http://zelus.di.ens.fr/examples.html

[^9]: 2 https://computation.llnl.gov/casc/sundials/main.html

